
Design of network setup automation using gitops
operation

Mafeni Vitumbiko
School of Electronic Engineering

Soongsil University
Seoul, Korea

vitumafeni@dcn.ssu.ac.kr

Younghan Kim
School of Electronic Engineering

Soongsil University
Seoul, Korea

younghak@ssu.ac.kr

Abstract—The deployment of cloud-native private 5G networks
on public, private, or hybrid cloud platforms is becoming a key
trend for operators and vendors. While cloud-native architectures
offer rapid and software-driven deployments, they introduce
challenges in automation, scaling, and network consistency. Cur-
rent studies often lack validation in real-world environments. This
paper presents a framework that uses open-source projects and
GitOps principles to automate the deployment and management
of cloud-native private 5G networks on real infrastructure by
leveraging Kubernetes and OpenStack. In addition, this paper
addresses the fixed network topology issues encountered when
transitioning from a test environment to a real production envi-
ronment. The proposed framework facilitates rapid deployment
and automation across multi-cluster environments, providing a
practical solution for operators.

Index Terms—Automation, Deployment, Private 5G, Multi-
cluster, Kubernetes, GitOps

I. INTRODUCTION

In recent years, researchers have increasingly utilized vir-
tualization platforms like OpenStack and VMware to exper-
iment with network configurations and deployments. Virtual
Network Functions (VNFs) are now evolving from Virtual Ma-
chines (VMs) to more lightweight and dynamic solutions in the
form of containers, known as Cloud-Native Network Functions
(CNFs) [1]. Kubernetes is the leading platform for running
Cloud-Native Network Function (CNF) applications. However,
the growing complexities of cloud-native network applications,
particularly with 5G containerized applications, demand the
implementation of automation. The scope of these automation
processes covers a wide range of tasks, from deployment to
immediate reconfiguration of a particular Network Function
(NF) [2]. By leveraging the Kubernetes Resource Model
(KRM) and extending its API through Custom Resource
Definitions (CRDs), network intents or NFs can be defined
and managed by the underlying Kubernetes controllers. Often,
a single Git repository is used to store these KRM resources,
serving as a single source of truth for the entire desired state
of the network from a centralized system [3]. GitOps [4] is
an operational framework that uses Git as the single source of
truth for managing declarative infrastructure and applications.
Its principles include: declarative infrastructure to define the
desired state, Git as the source of truth for all configurations,
automated delivery through CI/CD pipelines, continuous rec-

onciliation to ensure the system matches the desired state, and
collaboration via pull requests (PRs) for safe and transparent
changes. These principles improve reliability, security, and
efficiency by automating deployments and reducing manual
intervention. Several other projects and manuscripts exist
adhering to GitOps principles, but they do not necessarily
focus on the complex management, configuration, and de-
ployment of private 5G networks. Nephio [5] is an open-
source project that specifically targets private 5G management
while following GitOps principles. Nephio [6] aims to provide
carrier-grade, simple, and open Kubernetes-based cloud-native
intent automation, along with common automation templates
that significantly simplify the deployment and management
of multi-vendor cloud infrastructure and network functions
across large-scale edge deployments. Regrettably, the Nephio
project currently focuses only on running and testing free5GC
and OAI 5G use cases on Kubernetes IN Docker (KIND) [7]
clusters using a Containerlab [8] environment, rather than on
actual Kubernetes clusters. This approach limits the ability to
fully assess system performance and behavior in real-world
scenarios. Testing on real Kubernetes clusters would provide
more accurate insights and validate the system’s robustness in
practical use cases. Therefore, in this paper, we build upon
Nephio and explore how to transition the Proof of Concept
(PoC) from running on KIND to real Kubernetes clusters
hosted on OpenStack. The key contributions of our paper
include:

• Providing an architectural overview of Nephio on real
Kubernetes clusters running on OpenStack, along with
detailed setup procedures.

• Adapting and optimizing the Nephio private 5G topology
from KIND clusters to real Kubernetes clusters, address-
ing the limitations of KIND environments.

• Integrating with ArgoCD as the GitOps tool for auto-
mated package deployment, ensuring efficient and con-
sistent management across multi-cluster environments.

The rest of the article is structured as follows. Section II
presents related work. Section III presents the proposed system
description. Section IV presents preliminary experiment and
evaluation of the proposed work. Finally, section V presents
our future planned directs and conclusions.

402979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

Fig. 1. Proposed Nephio OpenStack Topology

II. RELATED WORK

This section presents various existing studies in relation to
our study with distinct components and focus.

The paper [2] focuses specifically on using Kubernetes
Operators for Netconf-based configuration management, em-
phasizing the automation of network configurations using
GitOps principles. However, it is somewhat narrow in scope,
concentrating primarily on configuration management rather
than broader lifecycle management or other aspects of network
function orchestration. In [9], the focus is on using the
Open Network Automation Platform (ONAP) to automate 5G
network slices but it can be overly complicated for operators
who need quick, efficient deployment solutions. The paper [10]
emphasizes the challenges of containerizing 5G workloads and
proposes solutions using the Smart Edge framework. However,
while the approach is cloud-native, it relies heavily on specific
tools (e.g., Ansible, Helm), which may introduce complexity
and reduce flexibility compared to more modern practices like
GitOps. Unlike our approach, the paper [11] focuses only
on automating the configuration and implementation of the
Access and Mobility Function (AMF), making it not fully
automated. The article in [12] explores the use of Kuber-
netes operators and the declarative approach through KRM to
automate the management and configuration of edge-located
User Plane Functions (UPFs). However, this approach does not
leverage the benefits of the GitOps methodology to simply the
task.

III. SYSTEM DESCRIPTION

In this section, we introduce the main conceptual parts
of our proposal and select an open source project, Nephio
[6], as the base framework software. We utilize OpenStack
[13] as the replacement platform to KIND for running our

Fig. 2. Nephio OpenStack Subnets View

clusters within the private 5G network topology. OpenStack
offers a dashboard for administrators to maintain control while
enabling users to provision resources via a web interface
[13]. In the default Nephio configuration, Containerlab typ-
ically employs a flat networking model, where all containers
share a single network namespace or bridge. In our proposed
architecture, depicted in Fig. 1, we adhere to the original
Nephio network topology, maintaining the two cluster types:
the management cluster and workload cluster (the core cluster,
the regional cluster and the edge cluster). However, instead of
running the clusters on a KIND-containerlab infrastructure,
they are now deployed as real clusters within an OpenStack

403

environment. Each workload cluster operates in its own iso-
lated subnet, as shown in Figure 2. All workload clusters are
created through the Cluster API through Nephio webui in the
management cluster, which resides in the public subnet. The
management cluster is set up separately using Ansible scripts.
The management cluster is connected to the public network
for external access directly for the git server especially if
there would be other workload clusters deployed in a different
cloud, while workload clusters remain isolated in managed
subnets but can still access the external network through
routers. The experimental network setup works because all
clusters share the same underlying cluster network. When
configurations for each cluster are deployed to their respective
Git repositories, the ArgoCD instance running in each cluster
pulls these configurations. The 5G OAI network functions are
static, pre-configured KRM files stored in an upstream Git
repository. Upon deployment, these network functions connect
seamlessly through specified named interfaces such as NG,
Xn, E2, and F1. For example, the RAN component in the
regional cluster connects to the Core and Edge clusters via
these interfaces, while the Edge cluster connects to the Core
cluster. These connections adhere to ORAN standards. The
placement of Core and RAN network functions, as well as
the naming conventions for the clouds, is based on the O-
RAN.WG6.CADS-v08.00 [14]

IV. PRELIMINARY EXPERIMENT AND RESULTS

This section highlights the initial multi-cluster setup on
OpenStack and a basic comparison with the KIND setup,
based on the original proof of concept from the Nephio project
community.

A. Cluster Setup on OpenStack
The management cluster with three nodes(one control plane

node and two worker nodes) is connected to the public
network, allowing interaction with external resources, while
workload clusters are isolated within managed subnets but
still have access to the external network through routers. In
other words, our setup reflects a typical deployment model for
a cloud environment that considers scalability, network seg-
mentation, and dynamic IP management—ideal for complex
systems like 5G networks. On all the clusters, we replaced
ConfigSync with ArgoCD as the deployment tool to use for
gitops operations. The git repository for each cluster still
stored over gitea git server running in the management cluster.
New Nephio packages are introduced to match the OpenStack
infrastructure.

B. Experiment and Preliminary Results
In our preliminary results, we conducted a series of ex-

periments to evaluate our proposal. OpenStack cloud consists
of three nodes each having Intel Xeon Gold 6230 with 20
cores each and 188 GB of memory. Both the management
cluster on KIND and on OpenStack were configured with the
same instance specifications as outlined in the original Nephio
requirements. The guide and configuration instructions of our
experiment can be found here [15]. To test the connectivity
between workload clusters, we utilized the iPerf program [16],
which allowed us to a ping test across the workload clusters -
assumed to be in different regions or availability zones. On the
other hand, we used cilium Container Network Interface(CNI)
cluster mesh [17] for multi-cluster inter-connectivity.

From the experiment, a comparison of the average deploy-
ment time required to bootstrap the management cluster on a

Fig. 3. Resource Utilization

404

KIND setup versus our proposed approach was conducted.
The results clearly indicate that our approach is twice as
efficient in terms of deployment time. Specifically, our pro-
posed method completed the bootstrap process 40 minutes
faster than the Nephio KIND approach, which required up to
1 hour and 21 minutes to bootstrap the management cluster.
However, when comparing the deployment time for workload
clusters, there were no significant differences. Additionally,
even though setting up multi-cluster connectivity is chal-
lenging [18], we conducted inter-cluster connectivity tests
using the iPerf program. Although these tests were performed
manually at this stage, we successfully established inter-
cluster connectivity. We further tested the CPU and memory
utilization of our approach in comparison with the original
Nephio KIND to evaluate its feasibility and performance in
a production environment. Specifically, we investigated how
an increasing number of requests to the system would affect
resource utilization. Firstly, in the memory usage scenario (as
shown in Figure 3a), we observed that in both cases—Nephio
KIND and Nephio OpenStack—memory usage increased as
the number of requests increase. Similarly, we examined CPU
usage in relation to the number of requests, setting a threshold
at 60%. The results, as shown in Figure 3b, indicate that
CPU usage increases linearly in both Nephio KiND and
Nephio OpenStack. However, Nephio KIND was shown to use
more resources than Nephio OpenStack because all Nephio
components (management cluster and workload cluster) are
installed on a single server, whereas in Nephio OpenStack, the
components are distributed across multiple nodes in clusters.
Nephio KIND reaches the 60% threshold at 3,000 requests,
again due to the fact that all system components are installed
on one server. Nephio OpenStack has shown to be feasible
because it fell below the threshold at 55% with 6,000 requests.

V. CONCLUSION AND FUTURE DIRECTIONS

In this study, we presented the design of a 5G network
topology automation setup based on the Nephio project, which
currently supports KIND cluster deployments. We showcased
our preliminary network setup and experiments to demonstrate
the efficiency and potential of enhancing and transition from
the initial Nephio KIND proof of concept. Our preliminary
experiment and results show that our proposal is feasible for
a production use cases. Future work will focus on expanding
the setup to other cloud providers, fully automating the net-
work configuration, particularly cluster inter-connectivity, and
further reducing deployment time during the bootstrap.

ACKNOWLEDGMENT

This work was partly supported by Institute of Information
& communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (RS-2022-
II221015, Development of Candidate Element Technology for
Intelligent 6G Mobile Core Network and RS-2024-00398379,
Development of High Available and High Performance 6G
Cross Cloud Infrastructure Technology)

REFERENCES

[1] Á. Vázquez-Rodrı́guez, C. Giraldo-Rodrı́guez, and D. Chaves-Diéguez,
“A cloud-native platform for 5g experimentation,” in 2022 IEEE In-
ternational Black Sea Conference on Communications and Networking
(BlackSeaCom). IEEE, 2022, pp. 60–64.

[2] Á. Leiter, A. Hegyi, I. Kispál, P. Böõsy, N. Galambosi, and G. Z. Tar,
“Gitops and kubernetes operator-based network function configuration,”
in NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 2023, pp. 1–5.

[3] P. Wörndle, S. Terrill, and T. Dinsing, “Automating telecom software
deployment with gitops,” Ericsson Technology Review, vol. 2023, no. 2,
pp. 2–10, 2023.

[4] T. A. Limoncelli, “Gitops: a path to more self-service it,” Communica-
tions of the ACM, vol. 61, no. 9, pp. 38–42, 2018.

[5] A. Kapadia, “What is the nephio project?” Available at https://www.
aarnanetworks.com/post/what-is-the-linux-foundation-nephio-project
(2022/06/29).

[6] Nephio, “Nephio: Cloud native network automation,” Available at hhttps:
//nephio.org/ (2024/07/14).

[7] G. Madapparambath, “Exploring kubernetes 1.29 with
kind,” Available at https://medium.com/techbeatly/
exploring-kubernetes-1-29-with-kind-a2704e1c729d (2024/01/13).

[8] S. Rajhi, “Containerlab: A great tool for orchestrating and managing
container-based networking labs,” Available at https://medium.com/p/
7d05d50deec7 (2023/10/26).

[9] V. Q. Rodriguez, F. Guillemin, and A. Boubendir, “Automating the
deployment of 5g network slices using onap,” in 2019 10th International
Conference on Networks of the Future (NoF). IEEE, 2019, pp. 32–39.

[10] Q. Zhao, S. Ranganath, S. Feng, G. Li, S. J. Li, Z. Shi, B. Ding, and
J. Gao, “Customizable cloud-native infrastructure for private 5g,” in
2023 26th Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN). IEEE, 2023, pp. 50–57.

[11] K. Du, X. Wen, L. Wang, and T.-T. Nguyen, “A cloud-native based
access and mobility management function implementation in 5g core,”
in 2020 IEEE 6th International Conference on Computer and Commu-
nications (ICCC). IEEE, 2020, pp. 1251–1256.

[12] Á. Leiter, I. Kispál, A. Hegyi, P. Fazekas, N. Galambosi, P. Hegyi,
P. Kulics, and J. Bı́ró, “Intent-based 5g upf configuration via kubernetes
operators in the edge,” in 2022 Thirteenth International Conference on
Ubiquitous and Future Networks (ICUFN). IEEE, 2022, pp. 186–189.

[13] OpenStack, “Welcome to openstack documentation,” Available
at https://docs.openstack.org/2024.1/? ga=2.29009081.480386473.
1725245166-399538587.1722342014 (2024/04/13).

[14] A. ORAN, “O-ran working group 6 cloud architecture and deployment
scenarios for o-ran virtualized ran,” Available at https://specifications.
o-ran.org/specifications (2024/10/29).

[15] M. Vitumbiko, “Nephio over openstack,” Available at https://github.com/
VituMafeni/nephio-test-infra-openstack (2024/03/04).

[16] E. . L. B. N. Laboratory, “What is iperf / iperf3 ?” Available at https:
//iperf.fr/ (2024/02/20).

[17] C. Authors, “Setting up cluster mesh,” Available at https://docs.
cilium.io/en/stable/network/clustermesh/clustermesh/#gs-clustermesh
(2024/08/14).

[18] T.-N. Nguyen, J. Lee, M. Vitumbiko, and Y. Kim, “A design and
development of operator for logical kubernetes cluster over distributed
clouds,” in NOMS 2024-2024 IEEE Network Operations and Manage-
ment Symposium, 2024, pp. 1–6.

405

