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Abstract—Next-generation cellular networks are shifting to-
wards cloud-based infrastructures emphasizing programmability,
virtualization, and modular architectures. The open radio access
network (O-RAN) paradigm is a promising approach to over-
coming traditional RAN limitations by offering an open frame-
work for data-driven optimization at the individual user level.
However, this openness also introduces vulnerabilities, where
malicious attacks or unauthorized requests can compromise
user privacy, disrupt resource allocation, and degrade overall
service quality. In addition, new user equipment (UEs) can
be introduced with new attacks and vulnerabilities over time.
To address these challenges, we propose a deep incremental
learning framework designed for the O-RAN environment, aimed
at managing and mitigating these cyber threats while ensuring
optimal user experience and resource utilization. We formulate
an optimization problem to learn new attacks or vulnerabilities
while retaining the knowledge of previous threat knowledge. To
solve the optimization problem, we propose an exemplar-based
convolutional neural network (CNN) model, implemented within
the non-real-time RAN intelligent controller (non-RT RIC), to
effectively monitor traffic at the radio units (RUs). Experimental
results demonstrate that our proposed framework secures the
O-RAN ecosystem with over 91% accuracy, outperforming non-
incremental methods by approximately 31% in distinguishing
between benign and malicious traffic, thereby greatly enhancing
network security and reliability for lifelong.

Index Terms—O-RAN, incremental learning, RAN security,
dynamic traffic, non-RT-RIC

I. INTRODUCTION

Wireless communication is rapidly evolving, with a diverse
array of new communication devices emerging to provide
various services. Consequently, the volume of network traffic
is increasing significantly, as different types of traffic require
tailored services [1]. Traditionally, managing these diverse
traffic types necessitated a wide range of hardware solutions,
complicating network management. However, there is a shift
towards a unified hardware approach that allows multiple
services to operate on the same infrastructure. The radio access
network (RAN) is a promising technology that addresses this
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need by decoupling the physical and logical layers of com-
munication. This separation enables different logical layers
to share the same physical layer, facilitating the delivery of
multiple services while simplifying network management and
enhancing efficiency.

Traditional RAN systems often struggle with vendor lock-in,
inflexibility, and high costs due to tightly integrated hardware
and software. In contrast, the open radio access network (O-
RAN) is reshaping wireless telecommunications by promoting
openness, disaggregation, and standardization. By decoupling
hardware and software, O-RAN enables greater interoper-
ability, innovation, and vendor-neutral ecosystems, leading to
more competitive and cost-effective solutions. Its architecture,
consisting of central units (CUs), distributed units (DUs), and
radio units (RUs), facilitates 5G deployment and advanced
network optimization [2]. As diverse traffic types emerge
alongside various UEs, the likelihood of new and evolving
threats increases significantly over time.

Despite the burgeoning interest in O-RAN, the domain of
threat detection and security within this framework remains
less explored. Existing studies have introduced some strategies
for addressing network anomalies, such as TenaxDoS, which
integrates federated learning with a replay memory-based
continual learning method [3], and federated learning-based
[4] anomaly detection in the O-RAN architecture, emphasizing
data privacy preservation. Alves et al. [5] examined the fea-
sibility of machine learning techniques for anomaly detection
in O-RAN environments. Basaran et al. [6] developed a deep
learning-based autoencoder to detect RF anomalies at the user
equipment level, enhancing service continuity. However, static
models in anomaly detection become less effective over time
because they are trained on a fixed dataset and cannot adapt to
new patterns or threats that emerge in a constantly changing
environment like O-RAN. As new devices connect, traffic
increases and network behaviors shift, the types of anomalies
evolve, making it difficult for static models to maintain accu-
racy. Without the ability to learn from these changes, static
models miss new types of anomalies or generate false alarms.

To address this issue, we propose an incremental deep-
learning framework for the lifelong security of O-RAN by
adapting evolving types of threats. Incremental learning can
learn new patterns without forgetting previous patterns. It
allows the model to update its knowledge as new data comes
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Fig. 1. System model for lifelong security in the O-RAN ecosystem.

in without needing to retrain from scratch, making the de-
tection process more robust and adaptive. Our research aims
to enhance the cohesiveness of the O-RAN ecosystem for
real-time users for lifelong. The main contributions of our
work include the development of an incremental deep-learning
framework designed to manage malicious requests and ensure
pervasive user services. We formulate an optimization problem
to learn new knowledge without forgetting prior knowledge,
specifically targeting dynamic changes and uncertainties re-
lated to attack requests. Furthermore, we propose an exemplar
reply-based CNN model to solve this optimization problem
effectively. Experimental results demonstrate that our approach
successfully continually categorizes malicious network traffic,
thus contributing to a more cohesive and secure O-RAN envi-
ronment for lifelong. The main contributions of our proposed
method are given below:

• We propose an incremental learning framework for the
O-RAN environment that secures the O-RAN ecosystem
handles any attacks or threat requests and provides per-
vasive services to the users.

• We formulate an optimization problem to learn new
threats or vulnerability patterns without forgetting the
knowledge of previously learned threats on dynamic
changes and uncertainties, specifically targeting poi-
sonous requests.

• We propose an exemplar replay-based incremental CNN
model to solve the optimization problem, ensuring life-
long adaptive service in the O-RAN ecosystem amidst
evolving threats and dynamic conditions.

• Experimental results demonstrate that our proposed
method effectively classifies newly introduced malicious
netquakes while retaining knowledge of prior threats,
achieving an average accuracy of over 91% which is 31%
higher than the non-incremental mechanism.

The rest of the paper is organized as follows. Section II
discusses the literature review. In Section III and IV, we
illustrated the system model and incremental O-RAN anomaly

scenario respectively. Section V and VI represent the problem
formulation and solution approach, respectively. Section VII
presents the simulation settings and results, and finally, Section
VIII concludes the paper.

II. LITERATURE REVIEW

In this section, we discussed the baseline works for O-
RAN security. Alves et al. [5] propose some machine learn-
ing models to classify anomalies based on two 5G O-RAN
datasets. Additionally, they propose a strategy to label anoma-
lies using t-SNE on datasets with multiple KPIs, enabling
clear identification of abnormal patterns. Başaran et al. [6]
present a deep learning-based autoencoder for detecting RF
anomalies at the UE side via xApps on the 5G near real-
time RIC, ensuring improved and seamless service continuity.
Rumesh et al. [7] propose a security architecture within a
Network Digital Twin (NDT), aligned with O-RAN standards,
for training machine learning models to enhance O-RAN
security operations. They demonstrate a hierarchical Federated
Learning (FL) anomaly detection algorithm across three traffic
slices, with training data generated using the Colosseum
emulation system. Attanayaka et al. [4] explore the use of FL
for anomaly detection in the O-RAN architecture, emphasizing
data privacy preservation. They propose a peer-to-peer (P2P)
FL-based anomaly detection mechanism and conduct an in-
depth analysis of four P2P FL variants. They evaluate their
proposed models using simulations with the UNSW-NB15
dataset. Benzaı̈d et al. [3] introduce ‘TenaxDoS’, a framework
that integrates FL with a replay memory-based CL strategy.
This approach enables sustainable and cooperative network
anomaly detection within the O-RAN environment beyond 5G
networks. Mahrez et al. [8] analyze the handover process of
a moving vehicle by comparing the effectiveness of different
machine-learning techniques for anomaly detection within an
O-RAN traffic steering module. Their goal is to improve
handover prediction accuracy using these ML methods.
Given the promising potential of O-RAN, incremental learning
can play a key role in ensuring a sustainable, long-term
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solution for securing the O-RAN ecosystem. Since continual
learning is relatively underexplored in this context, it presents
a valuable opportunity for further investigation.

III. SYSTEM MODEL

The system model of our work is shown in Fig 1. We have
one central Unit, represented as CU , M number of distributed
units (DUs), denoted as DUi, where i = 1, 2, . . . ,M , and
N number of radio units (RUs), denoted as RUj , where j =
1, 2, . . . , N . The user equipment is denoted as UE. Each DUi

is connected to a subset of RUs, represented by the set RDUi
⊆

{RU1, RU2, . . . , RUN}. The connection between the CU and
DU can be modeled as a high-level control plane or backhaul
link. For each DUi, the link is represented as LCU→DUi where
L represents the connection between units. The connection
between each DU and the RUs under its control is denoted
as LDUi→RDUi

indicating that the DUi controls the set of
RUs in RDUi

. Every UE is connected to a subset of RUs. Let
RUE ⊆ {RU1, RU2, . . . , RUN} be the set of RUs connected
to the UE. The communication link between the UE and the
connected RUs is represented as LUE→RUE

.

A. Wireless Channel Model
We represent the wireless channel as hj(t) between the UE

and RU j. The received signal yj(t) at RU j is expressed as
Eq. (1).

yj(t) = hj(t)x(t) + nj(t), (1)

where x(t) is the transmitted signal from the UE, hj(t) is the
channel gain (complex fading coefficient) for RU j, nj(t) is
the additive White Gaussian Noise (AWGN) at RU j, typically
nj(t) ∼ N (0, σ2

n).
Multi-path Fading Model: We assume that the wireless

channel consists of multiple paths between the UE and each
RU. The wireless channel is expressed as Eq. (2).

hj(t) =

Lj∑
l=1

αj,le
−j2πfj,ltejθj,l , (2)

where Lj is the number of multi-path components for RU j,
αj,l is the amplitude gain of the l-th path for RU j, fj,l is the
doppler shift of the l-th path for RU j, dependent on the UE’s
velocity and direction, and θj,l is the phase shift of the l-th
path for RU j.

Path Loss Model: We modelled the path loss between UE
and RU j as Eq. (3).

PLj = PL0 + 10η log10(dj), (3)

where PLj is the path loss for the link between UE and RU j,
PL0 is the path loss at a reference distance (usually 1 meter),
η is the path loss exponent, which depends on the environment
(urban, rural, indoor, etc.), and dj is the distance between the
UE and RU j.

Complete Channel Model: The complete channel gain (in-
cluding path loss and fading) between UE and RU j can then
be written as Eq. (4).

h′
j(t) =

hj(t)

PLj
(4)

Fig. 2. Proposed solution approach for enhancing the incremental O-RAN
security of the ecosystem.

IV. INCREMENTAL O-RAN ANOMALY SCENARIO

We U(t) = {UE1,UE2, . . . ,UEN(t)} represent the set of
UEs at time t, where N(t) is the number of UEs at time t. New
UEs can be introduced dynamically over time. We Ak(t) =

{A1
k, A

2
k, . . . , A

Pk(t)
k } represent the set of anomaly types for

UE k, where Pk(t) is the number of anomaly types observed
in UE k at time t. When new UEs UEN(t)+1,UEN(t)+2, . . .
are introduced into the RAN, the system must handle their
integration. Some UEs already in the system may experience
the introduction of new anomaly types. For any UEk ∈ U(t),
as new anomaly types are detected, we update the anomaly
set Ak(t) as Eq. (5).

Ak(t+ 1) = Ak(t) ∪ {APk(t)+1
k , A

Pk(t)+2
k , . . . } (5)

This process continues as new anomalies evolve within the UE.
When a new UE, UEN(t)+1, is added at time t, its anomaly
types evolve simultaneously, with the possibility of new types
being introduced into the UE over time. The new user arises
is represented as Eq. (6).

U(t+ 1) = U(t) ∪ {UEN(t)+1} (6)

The set of anomaly types for UEN(t)+1 will grow as Eq. (7).

AN(t)+1(t+k) = AN(t)+1(t+k−1)∪{APN(t)+1(t+k−1)+1

N(t)+1 , . . . }
(7)

The loss function must now account for both the detection of
new UEs and evolving anomalies within existing UEs. The
total incremental anomaly detection loss function is expressed
as Eq. (8).

L(t) =

N(t)∑
k=1

(Lα(M(t), Ak(t)) + Lnew-UE(M(t),UEk(t))) ,

(8)
where Lα(M(t), Ak(t)) is the loss for detecting anomalies in
UEk. Lnew-UE(M(t),UEk(t)) is the loss associated with the
detection of new UEs.
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V. PROBLEM FORMULATION

We formulate the continual learning optimization problem
as follows:

min
θt

(
1

Nt

Nt∑
i=1

[w(yi)ℓ(M(xi; θt, At), yi)]

+
1

Kt

Kt∑
j=1

[βtℓ(M(xj(t); θt, At), yj(t))]

)
,

(9)

where Nt represents the number of new samples at time t. Kt

represents the number of replay samples at time t. w(yi) is a
weight function for the new sample labels yi. ℓ(·, ·) represents
the loss function. M(x; θt, At) represents the model M at time
t with parameters θt and anomaly set At. βt is the weight for
the replay samples. xi, yi are the new input data and labels
at time t. xj(t), yj(t) are the replayed input data and labels
from previous time steps. The anomaly set At increases over
time when new anomaly patterns come. The objective function
is designed to balance learning from the new data Nt and
replayed data Kt to maintain continual learning and anomaly
detection performance over time.

VI. SOLUTION APPROACH

To solve the formulated problem, we propose an exemplar-
reply-based deep incremental framework within the non-RT-
RIC, illustrated in Fig. 2. We propose a low-level and high-
level [9] feature fusion-based CNN model as the backbone for
our incremental learning framework as shown in Fig. 3. The
CNN extracts both low and high-level patterns [10] from all
RU traffic, analyzes them, and filters out unauthorized packets
to ensure secure operation across all UEs. Our proposed
exemplar reply-based method is able to adapt new knowledge
without forgetting the previous knowledge. We have detailed
our proposed approach sequentially in this section. The model
structure with anomaly classes is shown in Eq. (10).

M(xi,k, θt, At) = ŷi,k, At = {α1, α2, . . . , αAt
} (10)

where M(xi,k, θt, At) is the CNN model parameterized by θt
at time t, processing input xi,k from the k-th RU of the i-th
UE. The output ŷi,k is the predicted anomaly class from At,
the set of known anomalies at time t, with At total anomaly
types.

We use weighted cross-entropy loss as our loss function.
The loss for the current task is shown in Eq. (11).

Lcurrent(θt) =
1

N

N∑
i=1

[w(yi) · ℓ(M(xi; θt, At), yi)] (11)

where w(yi) is a dynamic weight function assigning higher
weight to rare anomaly types, and ℓ(·) is the cross-entropy
loss. yi is the true anomaly class for the i-th UE data xi.

To store the representative samples from the previous task,
we use a reply memory buffer. The memory buffer with time
decay is shown in Eq. (12).

Bt = {(xj(t), yj(t), αj(t))}Kt
j=1

with time-decay:Bt ← βt ·Bt−1

(12)

Fig. 3. Proposed CNN model for our framework.

where Bt is the buffer at time t, storing previous data
(xj(t), yj(t), αj(t)) of Kt samples, and βt is the decay factor
ensuring older data loses importance as t increases. To keep
the previous knowledge, we need to train the representative
samples of the previous samples at the time of training the
new task. We define the loss of the representative samples of
the previous task as replay loss with decay, shown in Eq. (13).

Lreplay(θt) =
1

Kt

Kt∑
j=1

[βt · ℓ(M(xj(t); θt, At), yj(t))] (13)

where the time-decayed memory buffer reduces the importance
of past samples.

We combine the current loss and reply loss and make a
trade-off to balance both plasticity and elasticity. The com-
bination of loss with the current and replay is shown in Eq.
(14).

Ltotal(θt) = λtLcurrent(θt) + (1− λt)Lreplay(θt) (14)

where λt dynamically adjusts the importance of new data
versus replayed data, balancing between anomaly detection
and generalization to older examples.

Based on the total loss, we update the gradient of the model.
The gradient update for continual learning is shown in Eq.
(15).

θt+1 = θt − ηt∇θtLtotal(θt) (15)

where ηt is the learning rate at time t, and ∇θtLtotal(θt) is the
gradient of the total loss with respect to the model parameters.
After learning the current task, we store some representative
samples of the current task in the reply buffer. These samples
will be used in further training when a new task comes. The
memory buffer update is shown in Eq. (16).

Bt+1 = Bt ∪ {(xi(t+ 1), yi(t+ 1), αi(t+ 1))new}Nt+1 (16)

where {(xi(t + 1), yi(t + 1), αi(t + 1))new} represents the
newly detected samples from time t + 1. When a new UE
comes, we expand the UE set. New UE has a high probability
of introducing new anomaly types. The UE set expansion is
shown in Eq. (17).

Ut+1 = Ut ∪ {ui}Ut+1
new (17)

where Ut+1 represents the number of new UEs added at time
t+ 1.
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(a) Non-incremental CNN (b) Proposed Method

Fig. 4. Task-specific sccuracy of our proposed method compared to conven-
tional non-incremental CNN method.

If a new UE introduces some new anomaly, we expand the
anomaly set along with the UE track. This new anomaly is
trained in a continual learning manner without forgetting the
previous anomaly-type knowledge. The anomaly set expansion
is shown in Eq. (18).

At+1 = At ∪ {αk}At+1
new (18)

where At+1 is the number of new anomaly types detected at
time t+ 1.

VII. SIMULATIONS SETTINGS AND RESULTS

A. Dataset and Environment Settings

For our experiment, we utilize the O-RAN anomaly detec-
tion dataset, as outlined in [11]. This dataset comprises 10,000
traffic data samples, each with 23 numerical features. The
dataset includes both benign and malicious O-RAN traffic,
spanning over 20 distinct pieces of user equipment. 3 train
passengers, 10 waiting passengers, 4 cars, and 3 pedestrians.
We divide the UEs into 7 sequential tasks. The data is divided
into two subsets: 80% of the samples are used for training,
while the remaining 20% are set aside for testing the model’s
performance on unseen data. we stored 500 exemplars from
each task in the reply buffer, maintaining a fair contribution
of each UE. We set up our computational environment using
Python 3.10 and PyTorch as the deep learning framework.
For model optimization during training, we used the Adam
optimizer [12]. We set the learning rate to 0.0001 to ensure
gradual updates to the model weights, preventing large jumps
that might destabilize the learning process. We used batch size
128 and λt = 0.5 throughout training.

B. Experimental Results

In this section, we present the results of our proposed
exemplar-based CL method compared to non-incremental set-
tings. To evaluate the performance, we took task-specific
accuracy, task-specific forgetting, average accuracy, average
forgetting, backward transfer, and forward transfer [13]. These
metrics are the baseline metrics for evaluating incremental
learning.

In Fig. 4, we compare the task-specific accuracy of our ex-
emplar replay-based method to a categorical non-incremental
deep learning approach across seven sequential tasks. As
shown in Fig. 4(a), the non-incremental method suffers a
significant accuracy drop for all previous tasks with each new
task introduction. Notably, during task 3, task 1’s accuracy
slightly improves due to similar malicious traffic patterns.

(a) Non-incremental CNN (b) Proposed Method

Fig. 5. Task-specific forgetting of our proposed method compared to conven-
tional non-incremental CNN method.

(a) Non-incremental CNN (b) Proposed Method

Fig. 6. Average accuracy of our proposed method compared to conventional
non-incremental CNN method.

In contrast, our proposed method shows negligible accuracy
drops when new tasks are introduced and can recover minor
losses during future task training, effectively minimizing for-
getting as demonstrated in Fig. 4(b). Although some forgetting
occurs during tasks 2 and 5, the model successfully restores
this knowledge in subsequent tasks, maintaining satisfactory
performance. In Fig. 5, we compare the task-specific for-
getting of our exemplar replay-based method with the non-
incremental deep learning approach across seven sequential
tasks. Positive values indicate forgetting, negative values re-
flect knowledge restoration, and zero represents no forgetting.
Fig. 5(a) shows the non-incremental method consistently for-
gets previous tasks, with slight restoration during task 3 due
to similarities with task 1. In contrast, our method exhibits
minimal forgetting, with only small positive values as shown
in Fig. 5(b). It also restores knowledge during later tasks, as
shown by negative values, ensuring strong overall performance
throughout the sequence.

In Fig. 6, we compare the average accuracy of our pro-
posed method with the conventional non-incremental ap-
proach, showing how accuracy evolves as new tasks are intro-
duced. Fig. 6(a) displays the conventional method’s average
accuracy, which consistently declines with each new task,
indicating a failure to retain previously learned knowledge.
In contrast, Fig. 6(b) illustrates our proposed method’s perfor-
mance, which effectively restores lost accuracy during training
on new tasks, demonstrating its ability to recover and maintain
overall performance despite sequential learning. In Fig. 7,
we compare the average forgetting of our proposed method
with the conventional non-incremental approach, showing how
task accuracy changes as new tasks are introduced. Positive
values indicate forgetting, negative values reflect knowledge
restoration and zero values signify no forgetting or restoration.
Fig. 7(a) shows the average forgetting of the conventional non-
incremental method, with consistently positive values indicat-
ing forgetting with each new task, highlighting its inability
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(a) Non-incremental CNN (b) Proposed Method

Fig. 7. Average forgetting of our proposed method compared to conventional
non-incremental CNN method.

(a) Non-incremental CNN (b) Proposed Method
Fig. 8. Forward transfer of our proposed method compared to conventional
non-incremental CNN method.

to retain previously learned knowledge. In contrast, Fig. 7(b)
illustrates our proposed method’s performance, with values
close to zero or negative, signifying effective mitigation of
forgetting. Even when some forgetting occurs, the model
can restore lost knowledge during subsequent task training,
demonstrating resilience and capacity for continual learning
without significant degradation.

In Fig. 8, we compare the forward transfer of our proposed
method with the conventional non-incremental approach, illus-
trating how learning previous tasks affects subsequent ones.
Positive values indicate that prior knowledge aids in learning
new tasks more effectively, while negative values suggest that
earlier knowledge hinders the acquisition of new information.
Fig. 8(a) shows the forward transfer of the conventional
non-incremental method, where consistently negative values
indicate that prior knowledge hinders the learning of new
tasks, highlighting the method’s limitation in integrating new
information. In contrast, Fig. 8(b) presents our proposed
method, with values close to zero or positive, signifying the
successful leveraging of prior knowledge to facilitate learning
of new tasks. This demonstrates that our approach avoids
interference from past tasks and enables more efficient learning
of future ones. In Fig. 9, we compare the backward transfer of
our proposed method with the conventional non-incremental
approach, showing how learning new tasks affects performance
on previously learned tasks. Positive values indicate that
learning new tasks enhances earlier task performance, while
negative values indicate performance degradation. Fig. 9(a)
shows the non-incremental method with consistently negative
values, highlighting its failure to retain prior knowledge when
learning new tasks. In contrast, Fig. 9(b) demonstrates that
our method maintains or improves performance on earlier
tasks, with values near zero or positive. Although there is
slight interference during task 5, the model quickly recovers,
showing that our method effectively balances learning new
tasks without forgetting previous ones.

(a) Non-incremental CNN (b) Proposed Method
Fig. 9. Backward transfer of our proposed method compared to conventional
non-incremental CNN method.

VIII. CONCLUSION

In this paper, we propose a deep learning-based continual
learning framework tailored for the O-RAN system, effec-
tively addressing the dynamic nature of cyber threats and
malicious traffic. The proposed exemplar replay-based CNN
model enables real-time traffic analysis and adaptive learning,
allowing the system to detect and respond to both new and
previously known attacks. This continual learning approach
ensures that the model evolves with the network, maintaining
its ability to protect user privacy, optimize resource allocation,
and uphold high-quality service in the face of emerging
vulnerabilities. The framework not only segregates malicious
from benign traffic but also adapts to the ever-changing
landscape of network threats. With over 91% average accuracy
in distinguishing between legitimate and harmful traffic, the
experimental results highlight the model’s robustness and
effectiveness, making it a valuable solution for enhancing the
security, reliability, and overall performance of the O-RAN
ecosystem in a rapidly evolving threat environment.
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