
1

COSMIC - Coding for Optimized Sending in
Multimedia InterPlanetary Communication

Sandra Zimmermann∗, Paul Schwenteck∗, Christian Vielhaus∗, Juan A. Cabrera∗, Frank H. P. Fitzek∗¶
∗ Deutsche Telekom Chair of Communication Networks, TU Dresden, Germany

¶ Centre for Tactile Internet with Human-in-the-Loop (CeTI)
E-mails: {firstname.lastname}@tu-dresden.de

Abstract—A popular technique for enhancing Content Deliv-
ery Networks (CDNs) is leveraging the opportunities provided
by Peer to Peer (P2P) networks, of which the Interplanetary
File System (IPFS) is a widely used one. While IPFS tends
to perform well only in homogeneous networks, performance
tends to quickly deteriorate when the channel parameters of
individual peers differ, which is the case in real-world scenarios.
A crucial technology for facilitating the flexible distribution of
data requests is Random Linear Network Coding (RLNC). The
RLNC technology is leveraged by the protocol Storing coded
Packets In-advance For IPFS (SPIFI).

Based on SPIFI, we design and implement the Coding for Op-
timized Sending in Multimedia InterPlanetary Communication
(COSMIC) protocol, which uses an adaptive data request scheme
to fit all imaginable network configurations. We compare the
performance of the three protocols, IPFS, SPIFI, and COSMIC,
in tailored and random test cases. To quantify performance,
we use the transmission time and transmitted overhead as our
metrics. Regarding the transmission time, COSMIC beats the
other protocols by at least 30%. The transmitted overhead of
COSMIC is slightly worse than SPIFI, but still beats IPFS by
a wide margin. For comparison, we also calculate the minimal
theoretically possible transmission time in a distribution network
with random parameters as a lower bound.

Index Terms—Distributed Storage, Multimedia Content Dis-
tribution, Multisource Transmission, IPFS, RLNC

I. INTRODUCTION

Efficient content distribution is growing in importance in
how we use the internet in the future. For example, video
consumption is increasing, as is the quality and, therefore, size
of individual files and the quality of experience requirements
of users [1]. One possibility is to expand the classic server-
client architecture by using the upload capacity of hosts
forming a Peer to Peer (P2P) network.

A very prominent example of a P2P network is
Interplanetary File System (IPFS) [2]. In IPFS, files are broken
down into small blocks, which are requested individually from
the available network participants. The requesting method
works well in homogeneous networks where all participants
have the same channel parameters, and no attention needs
to be paid to network characteristics. As soon as network
parameters show high variance, blocks are likely requested
from the wrong peer node, resulting in higher transmission
times. Furthermore, blocks may be requested twice, creating
unnecessary overhead. Both issues diminish the experience
for the user and the network. Moreover, adding more peer
nodes, i.e., potential senders, may increase transmission time

in some cases because of the aforementioned issues. Optimally
distributing the requests in such inhomogeneous networks to
all network participants requires extensive knowledge of the
network parameters, which cannot be assumed in practice [3].

A fundamental requirement for being able to distribute
requests flexibly is to avoid waiting for specific blocks. One
way of achieving this is to use linear codes, where linear com-
binations of blocks are stored instead of individual blocks [4].
In order to be able to restore the original data, a certain
number of coded blocks must be available at the receiver. The
increased flexibility of requests comes at the cost of additional
decoding time. Due to its ability to generate any amount
of redundancy at any time, Random Linear Network Coding
(RLNC) [5] as a coding scheme has proven effective. The
protocol that combines IPFS with RLNC is the Storing coded
Packtes In-advance For IPFS (SPIFI) protocol [6]. Instead of
specific blocks, only a number of coded blocks is requested
from each peer. The peer nodes are required to have enough
coded blocks available.

We also design Coding for Optimized Sending in Multi-
media InterPlanetary Communication (COSMIC), which is a
refinement of the SPIFI protocol. Instead of sending only one
request to each peer node, the requests are now distributed over
several individual messages, making a more flexible distribu-
tion to all nodes possible. Using a hardware testbed, we first
examine the performance of the IPFS, SPIFI, and COSMIC
protocols in tailored test networks. The test networks enable
us to prove that the existing protocols only achieve good
results with homogeneous network parameters. To assess the
generalizability of the results, we then examine all protocols
in 1500 randomly generated networks. Based on the nodes’
channel parameters, we calculate the best block distribution
and use the theoretical minimum transmission time as a lower
bound. COSMIC shows on average 40% less transmission time
and 19% less overhead than IPFS.

The rest of the paper is structured as follows. Section II
gives an overview of related work regarding coding in dis-
tributed storage networks and optimal load distribution. Sec-
tion III presents the applied protocols and theoretical computa-
tions, while Section IV explains our testbed and experimental
setup. Both are brought together in Section V, where we
present the results of our experiments before summarizing the
paper in Section VI.

390979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

2

II. RELATED WORK

A. Request Strategies Improvements in File Systems

The request strategy in IPFS has undergone many improve-
ments over the years [7]. However, few scientific papers are
trying to improve the request strategy of IPFS. Therefore, we
also consider request strategy improvements for BitTorrent [8],
whose request strategy is similar to that of IPFS. In [9], the
authors present a survey of performance studies of BitTorrent.
One suggested mechanism is to select nodes by proxim-
ity to decrease the transmission time and increase network
utilization. The authors in [10] and [11] propose schemes
that build an intelligent overlay network by selecting nodes
that are close by in the underlying network. These schemes
employ techniques like synthetic network coordinates and a
probabilistic flooding algorithm for topology construction and
maintenance. The general findings are that location proximity
decreases transmission times and increases network utilization
in homogeneous and heterogeneous networks.

B. RLNC in Distributed Storage Systems

Linear Codes such as Reed-Solomon codes have been
utilized to reduce storage expenses in distributed storage
systems [12]. Linux Redundant Array of Independent Disks
(RAID) systems also employ Reed-Solomon codes, allowing
them to withstand the failure of two hard drives [13], [14].
Erasure codes are another effective solution for reducing node
failure impacts and safeguarding data [15]. We suggest using
RLNC to create redundancy against node failure impacts.
RLNC offers distinct advantages over other erasure codes due
to its simple code structure: every linear combination of source
blocks is considered a valid code word. The decodability
in a distributed file system depends only on the number of
blocks received, not on the specific combination of blocks.
Another noteworthy benefit of RLNC is the ability to perform
recoding. Any entity possessing at least two coded blocks
can create a new coded block by combining them linearly,
thus eliminating the need to gather and decode all the data
upfront to introduce more redundancy. An implementation of
a network-coding-based distributed file system is presented
in [16], demonstrating the performance of RLNC regarding
throughput and storage costs. Also, [17] proposes a network
coding-based data storage to minimize data retrieval time
while maintaining high resilience.

C. Divisible Load Theory

The term divisible load theory is of great importance in the
field of distributed computing [18], e.g. cloud computing [19].
Here, multiple computers are connected to a distributed com-
puting network. A load that requires enormous time to process
is divided into fractions. Each computer receives a fraction for
processing, depending on the processing speed and the trans-
mission time to the processor. The optimization problem is to
balance the load between processors so that the computation
is completed in the shortest possible time. This problem can
be mapped to a distributed file system, where the processing
time for a processor is mapped to the channel bandwidth, and

the transmission time is mapped to the end-to-end delay for
the communication nodes. With RLNC, each node can respond
with coded blocks that are all useful for decoding. So we only
need to distribute the number of blocks each node should send
and not specify which node should send which specific block.

In [20], the authors have theoretically described the divisible
load theory for a peer-to-peer network. However, they only
considered the nodes’ uploading bandwidth, not their trans-
mission delay. The resulting formula for the optimized request
distribution and, thus, the minimum achievable transmission
time does not apply to our scenario.

III. METHODOLOGY

A. Transmission and Request Protocols

1) State of the Art: IPFS: In IPFS, a file is split into
equal-sized blocks, which are stored individually and can be
addressed with their individual Content Identifier (CID). The
CID of the file, i.e. the root CID, is the hash of the list of CIDs
of the individual child blocks. IPFS uses two types of requests:
a want-have request and a want-block request. The want-have
request queries the availability of a block with a specific
CID. The want-block request prompts a node to transmit a
specified block. To download a file in IPFS, a want-have
request for the root CID is first sent to all connected nodes.
Nodes that respond affirmatively are classified as session nodes
that may receive want-block requests in the future. Session
nodes are assumed to have all or a subset of the child blocks,
because of the availability of the root block. After a node’s first
affirmative response to the want-have request, the client sends
a want-block request for the root block to that node. After
receiving the root block, the client knows all CIDs of the child
blocks. Each child block is requested and transmitted using the
following procedure: A want-block request is first sent to one
selected random session node. The probability of selecting a
particular node for the want-block request increases with the
number of blocks received in the session from the respective
node so far. At the same time, all other session nodes receive a
want-have request. Depending on the timing of the responses
by nodes, IPFS proceeds in two different ways. If the child
block is first received from the randomly selected node, the
request scheme for that particular block ends. Otherwise, an
affirmative response to the want-have request arrives first by
some other node, which triggers a want-block request to that
node. Additional responses to the want-have requests do not
trigger more want-block requests. Hence, in IPFS, two nodes
may attempt to send the same child block simultaneously.
Consequently, IPFS may cause unnecessary data transmissions
as overhead.

Overall, the request strategy of IPFS depends on the trans-
mission timings and may cause overhead in the form of
unnecessary data transmissions. In addition, the node that
answers a want-have request the fastest always receives a
want-block request. For that reason, IPFS favors nodes with
low end-to-end delays regardless of the available bandwidths.
The bias towards selecting nodes by end-to-end delays may
increase the file transmission times and lacks a load balancing
mechanism.

391

3

2) State of the Art: SPIFI: SPIFI was designed to address
some of the limitations of IPFS requests. First, SPIFI adds
RLNC to the IPFS storage organisation. Instead of storing
uncoded blocks like in IPFS, linear combinations with random
coefficients of blocks are stored as coded blocks. All child
blocks of a root block are used for the linearly encoding. With
RLNC, a group of coded blocks can be decoded if a sufficient
number of linearly independent coded blocks are available.
Secondly, the request strategy of IPFS was adapted. The
objective of the SPIFI request strategy is to keep the overhead
as low as possible while at the same time simplifying the
practical implementation of multisource transmissions without
adding coordination effort to the protocol. In SPIFI, the
root block acquisition and the selection of session nodes are
performed identically as in IPFS. Child blocks, however, are
now distributed as coded blocks instead of uncoded blocks. A
request is sent to each session node for ⌈C/N⌉ coded blocks,
where C is the number of child blocks and N is the number
of session nodes. The nodes generate more coded blocks in
advance, when there is little load and can answer any request
directly with coded blocks from their storage. The request
strategy generates an overhead of at most N blocks. Unlike
IPFS, the data is only available at the application layer after C
independent linear combinations have been received and the
user data has been decoded.

While the design target of SPIFI is to minimize overhead,
timing issues can produce additional requests in heterogeneous
networks. A node with a high delay may answer the root block
request late, while the root block was already received and
requests for ⌈C/(N − 1)⌉ coded blocks have been sent to
other nodes. The latecomer node then receives a request for
⌈C/N⌉ blocks. At this point in time, the client has requested
⌈C/N⌉ too many child blocks.

To summarize, SPIFI reduces the transmission overhead
by balancing the load equally among nodes. However, in
heterogeneous networks, the transmission time may suffer
from slow nodes.

3) Our Contribution: COSMIC: Based on the SPIFI pro-
tocol, we have designed the COSMIC protocol to exploit
flexible request strategies further leveraging RLNC and adapt
to heterogeneous and dynamic networks. Instead of requesting
data from each node only once as in SPIFI, the requests are
spread over several iterations in COSMIC. Initially, a fixed
number of k blocks is requested from all N nodes. The number
k should be large enough to provide the necessary time to
survey the network and small enough to allow enough further
requests to make adjustments. Afterward, we track how many
blocks each node has sent and how many requests are still
pending. Once the number of blocks expected from a node
falls below the threshold value r, a new request for r blocks
is sent to this node.

In the worst case, all nodes fall below the threshold
simultaneously, and only a single block is missing. Then,
the client requests r blocks from each node, so that the
amount of requested blocks totals to (2r − 1)N . Hence, the
maximum overhead equals (2r − 1)N − 1 blocks, which can
be significantly higher than the maximum overhead of SPIFI
depending on C, N , and r. For large r, the total overhead

increases. A small r may increase the number of requests,
which increases the total transmission time. A suitable choice
of parameters makes it possible to balance both aspects. Our
preliminary observations have shown that this is the case for
k = 5 and r = 3.

4) Our Contribution: tinyC: tinyC is a variation of the
COSMIC protocol, in which the parameters are set k = 2
and r = 1. The choice of parameters tries to minimize the
overhead. This means that initially, a request is sent to each
node for two blocks. The next request for a single block is
only sent when all former requests are fulfilled. The possible
overhead is, therefore, a maximum of N − 1 blocks. Since
the request strategy creates idle times at the nodes, we expect
longer transmission times compared to COSMIC with other
parameters.

TABLE I: Summary of main notations

Symbol Description

N Number of nodes
n Node index
G Size of payload data [bytes]
C Number of child blocks
gn Payload data transmitted by node n [bytes]
g∗n Payload data transmitted by node n in the optimal case [bytes]
t Overall transmission time [seconds]
tn Transmission time of node n [seconds]

tmin Lower bound of transmission time
bn Bandwidth of node n’s transmission channel [MBit/s]
dn Delay of node n’s transmission channel [seconds]
r COSMIC threshold [blocks]
k COSMIC initial request [blocks]

B. Lower Bound Transmission Time

Multisource transmission can reduce transmission times
and, therefore, application delays significantly. However, a
suboptimal request distribution induces the problem of waiting
for slower nodes, thereby increasing the total transmission
time and reducing the user’s experience quality. When the
protocol-induced overhead is disregarded, the transmission
time tn of a single node n is determined only by its channel
parameters, bandwidth bn and delay dn, and the amount
of data to be transmitted gn; this is illustrated in Eq. 1.
Table I shows the notation used. The total transmission time
is determined as the maximum of the transmission times of
all nodes. The objective of an optimal request distribution is
to minimize the total transmission time. At the same time,
the total payload transmitted by all nodes is equal to the
original data size. These requirements are shown in Eq. 2 and
Eq. 3. The maximum of the individual transmission times tn is
minimal if all transmission times are equal. With the equality
of all transmission times, we get N equations for the optimal
amount of transmitted data g∗n of the form Eq. 4. Together
with Eq. 3, we obtain a linear system of N + 1 equations
with N + 1 variables. The solution of the linear equation
system results in a closed-form expression for the lower bound
of the transmission time tmin (Eq. 6).The time tmin is the
theoretically possible minimum transmission time if we only
consider the channel bandwidth and delay as transmission

392

4

limitations. More transmission limitations exist, such as com-
puting delays, which are not considered for the theoretical
transmission time. Therefore, tmin is the theoretical lower
bound and not achievable in practice. Our request strategies
are designed so that every node can send the optimal number
of blocks g∗n. Furthermore, we base our theoretical calculations
on the assumption that we can optimize the overhead and
transmission simultaneously (cf. Eq. 2, Eq. 3). However, in
practical terms, to minimize the transmission time, creating
overhead can not be avoided because we deal with integer
block counts and we have to account for network dynamics.

tn =
gn
bn

+ dn (1)

t = max
∀n

{tn} → min (2)

G =
N∑

n=1

gn (3)

tmin = tn =
g∗n
bn

+ dn ⇒ g∗n = (tmin − dn) bn (4)

Eq. 4 in Eq. 3 :

G =
N∑

n=1

(tmin − dn) bn = tmin

N∑
n=1

bn −
N∑

n=1

bndn (5)

tmin =
G+

∑N
i=1 bidi∑N

i=1 bi
(6)

C. Performance Metrics

To measure the performance of the four request strategies
we use two metrics, for which lower values indicate better
performance. The transmission time t > tmin is measured as
the time duration between starting a request and receiving the
last block. We do not consider the time to store the file on the
disc, as this depends on the consumer’s hardware. As a second
metric, we use the transmission overhead. The overhead is the
ratio between the additional blocks that have been sent but are
no longer needed to decode the file and the number of payload
blocks.

IV. MEASUREMENT SETUP

A. Network Topology

The investigated network topology comprises one consumer
and five provider nodes, all using the IPFS framework to
communicate with each other. All five provider nodes store the
complete data. We implemented IPFS, SPIFI, and COSMIC
for our test bed NET Playground [21]. The NET Playground is
a multi-functional network testbed comprising interconnected
Odroid-XU4 devices orchestrated by a control unit. The nodes
are Odroid devices. We set the Odroids’ different delay and
bandwidth values with the Linux traffic control (tc) tool.

Each measurement is a single request from the consumer to
obtain a 10 MB file. We capture the transmission time of the
requests by logging the request and response timestamps. In
addition, we count the number of blocks sent from each node
to calculate the overhead.

B. Tailored Test Cases

In this section, we outline three different test cases tai-
lored to explore the performance of distributed file systems
under specific network conditions characterized by varying
bandwidth and delay configurations. These test cases create
diverse channel conditions while ensuring consistency in the
lower bound of the transmission time (tmin = 1.125 s) across
all scenarios.

The first test case, the EQUAL scenario, establishes a ho-
mogeneous network environment where all nodes possess the
same bandwidth and delay characteristics. The scenario emu-
lates a network with uniform channel conditions, facilitating
equitable data transmissions. The EQUAL scenario provides
a benchmark for comparison against scenarios with diverse
channel properties. As SPIFI was designed for homogeneous
networks, we expect it to perform well in comparison to IPFS
and COSMIC.

The FLANK scenario introduces variance in bandwidth and
delay configurations among nodes. Nodes 1 and 2 exhibit
extreme values, with very low bandwidth and high delay,
while nodes 4 and 5 showcase contrasting characteristics,
featuring high bandwidth and low delay. Node 3 is between
these extremes, maintaining a symmetrical distribution of
channel properties. This configuration mimics scenarios where
network conditions vary gradually, allowing for a systematic
assessment of file system performance. Since SPIFI has to
wait for the slowest nodes to send their blocks, we expect it
to perform very poorly compared to IPFS.

The SERVER test case simulates a scenario akin to a client-
server architecture. So far, we have designed the channel char-
acteristics of the nodes so that nodes with a high bandwidth
have a low delay and vice versa. In the server test case,
nodes 1 to 4 have a very low bandwidth and delay. These
four nodes represent local nodes with short distances and low
data transfer rates, akin to neighboring nodes with limited
communication capacities. In contrast, node 5 symbolizes a
remote server with high bandwidth rates but higher delay.
This configuration challenges IPFS to efficiently manage data
transmission between nodes, as seen in previous work [6].
Since IPFS distributes its requests to the neighboring nodes
and the server randomly, there are cases where IPFS does not
use the server effectively and thus achieves poorer time results.
The bandwidth and delay values of the nodes in the different
test cases is shown in Table II.

TABLE II: Tailored Test Cases

Test Case Bandwidth {bn} in MBit/s Delay {dn} in ms

EQUAL {15, 15, 15, 15, 15} {27, 27, 27, 27, 27}
FLANK {2, 2, 14, 28, 28} {50, 50, 27, 5, 5}

SERVER {4, 4, 4, 4, 60} {5, 5, 5, 5, 50}

C. Randomized Test Case

Through the tailored test cases, we aim to comprehensively
evaluate the performance of IPFS, SPIFI, and COSMIC un-
der certain network conditions, providing valuable insights
into their adaptability and efficiency. However, the goal of

393

5

COSMIC is to design a request strategy that works well
for every network configuration. Therefore, we carry out a
series of measurements in which the channel conditions are
chosen at random. We define the nodes’ bandwidth capacity
bn ∈ [1, 30] MBit/s and the delay dn ∈ [5, 50] ms. We test
all request strategies in 1500 random network configurations.

V. EVALUATION

A. Tailored Test Cases

We evaluate the relative transmission time of the four
protocols IPFS, SPIFI, COSMIC, and tinyC in the tailored
test cases outlined in Section IV. This test sequence uses
well-designed network parameters to investigate under which
circumstances state-of-the-art protocols perform exceptionally
well or exceptionally poorly. For this purpose, we have con-
structed three networks that all share the same lower bound of
the transmission time tmin. Hence, the measured values can
be compared quantitatively.

Table III shows the mean relative transmission time t/tmin

and the mean overhead of all request strategies in the tai-
lored test networks. Regarding the relative transmission time,
all strategies perform well in the EQUAL test case. SPIFI’s
performance worsens with an increasing variance of network
conditions, which is expected by design. The relative trans-
mission time starts at low values of approximately 1.6 in the
EQUAL test case and reaches a value of 4.3 in the SERVER
case. IPFS is slower than the other strategies in the EQUAL
case and has a medium relative transmission time of 3.2. The
performance is slightly better in the FLANK test case, as the
nodes with high bandwidths also have low delays and are
more frequently queried. Only in the SERVER case IPFS’s
relative transmission time also rises to more than 4, as the
nodes with low delays are queried more often, resulting in
longer waiting times for individual blocks. COSMIC and tinyC
have outstanding relative transmission times below 2 close to
the lower bound in the EQUAL and FLANK test case and just
slightly above in the SERVER test case. tinyC is slightly worse
in comparison to COSMIC. In the SERVER test case, a more
aggressive request strategy with a larger COSMIC threshold r
can produce even lower transmission times at the expense of
increased overhead.

TABLE III: Results for Tailored Test Cases

Rel. trans. time t/tmin Overhead in %
Protocol EQUAL FLANK SERVER EQUAL FLANK SERVER

IPFS 3.2 2.9 4.1 78 64 88
SPIFI 1.6 3.6 4.3 12 46 24

COSMIC 1.7 1.5 2.1 33 36 25
tinyC 1.8 1.7 2.6 12 13 12

The smallest overhead of 12% is reached by tinyC and SPIFI
in the EQUAL test case. COSMIC has a larger overhead of
33%. Both COSMIC and tinyC produce a similar overhead
across all test cases. SPIFI incurs more overhead when individ-
ual nodes have a high delay, and their want-have replies miss
the first round of requests. This affects two nodes in the FLANK
case, so the extra overhead is higher than in the SERVER case,

100 101

transmission time t in s

0.00

0.25

0.50

0.75

1.00

C
D
F IPFS

SPIFI

COSMIC

tinyC

lower bound

Fig. 1: CDF over transmission time for all request strategies
over 1500 random networks and CDF of the theoretical lower
bound of the transmission time for comparison.

where only one node has a higher delay. IPFS has the highest
overhead of all protocols at around 70%, which increases even
further in the SERVER case. Overall, the correlation between
overhead and transmission time is very high with IPFS, as
duplicated blocks delay the payload transmission.

B. Transmission Time in Random Networks

In the first series of tests, we investigated how the re-
quest strategies behave in various special cases. All strategies
perform better in networks with a low variance of network
conditions. For SPIFI, this matches the design goal. However,
the other three strategies are designed for general-purpose
applications and should work well in general cases. To verify
the fulfillment of the design goal, we tested all strategies in
randomly generated networks.

Fig. 1 shows the CDF of the transmission time in 1500 ran-
dom networks for each request strategy and, for comparison,
the lower bound of the transmission time. The curve of IPFS
runs parallel to the lower bound of the transmission time but
is shifted to the right. While the lower bound varies between
0.6s and 4s, IPFS has a value range of 2s to 24s. COSMIC and
tinyC have a much steeper curve. Initially, the two protocols
still have a clear distance to the lower bound time of 1.6s,
but they tend towards the lower bound for long transmission
times. The 95% percentile of COSMIC is 3s. tinyC has an
equivalent curve, a constant distance to COSMIC, and a 95%
percentile of around 3.5s. SPIFI even manages to outperform
tinyC at very low transmission times but has a very flat curve,
i.e., a considerable variance of possible results, and is worse
than IPFS in 30% of cases. SPIFI has its 95% percentile at
12s and reaches 100% only at 20s. IPFS lags behind the other
protocols in good cases and has a transmission time of 2s at
best. The 95% percentile is at 9s and thereby well ahead of
SPIFI, with the 100% value slightly behind SPIFI’s value at
24s. However, the transmission times of both protocols are far
from the lower bound in all cases.

C. Overhead in Random Networks

In addition to the transmission time, we also observe the
overhead caused by random networks. The overhead is shown

394

6

IPFS SPIFI COSMIC tinyC
0

50

100

150
ov
er
h
ea
d
in

%

Fig. 2: Mean overhead for all request strategies averaged over
1500 random topologies.

in Fig. 2. SPIFI and tinyC both have a constant value of only
12%, which corresponds to the design specification for both
strategies. Both protocols are insensitive to the variance of
network conditions. COSMIC has a slightly higher overhead
between 25% and 45%. The protocol averages an overhead of
38%. IPFS produces results with the largest variance of values.
In the best case, it is even better than SPIFI at around 10%
but reaches maximum values of 140%. On average, IPFS has
an overhead of 60% and is significantly worse than the other
three protocols.

VI. CONCLUSION

In this work, we analyzed popular protocols for multisource
content distribution. Based on the state-of-the-art technologies
IPFS and SPIFI, we developed the adaptive request strategy
COSMIC. We showed that the established protocols only
work well in homogeneous networks and have a wide range
of possible results with increasing variance of transmission
parameters. We tested all protocols in randomly generated
networks with variable transmission bandwidth and delay and
calculated the theoretical lower bound of the transmission time
for comparison. The protocols we developed show a 40%
lower transmission time with 20% less overhead compared to
IPFS. tinyC minimizes the generated overhead while COSMIC
generates slightly more overhead with a marginally lower
transmission time. Both protocols consistently stay very close
to the lower bound of the transmission time and are, therefore,
preferable to the state-of-the-art protocols.

In order to refine the knowledge gained in this study and
test the capabilities of adaptive request strategies, we want
to investigate networks in which the transmission parameters
can change during transmission in future experiments. A
further generalization is the possibility of admitting network
participants who do not have complete data but can only
contribute parts of the data.

ACKNOWLEDGMENT

Funded in part by the German Research Foundation (DFG,
Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence
Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of
Excellence “Centre for Tactile Internet with Human-in-the-Loop”

(CeTI) of Technische Universität Dresden and the Federal Ministry
of Education and Research (BMBF) of Germany in the programme
of “Souverän. Digital. Vernetzt.” – Joint project 6G-life (project
16KISK001K) and within the DAAD School of Embedded and
Composite AI (SECAI) (project 57616814).

REFERENCES

[1] “2024 global internet phenomena report,” https://www.sandvine.com/
global-internet-phenomena-report-2024, accessed: 2024-03-11.

[2] J. Benet, “Ipfs - content addressed, versioned, p2p file system,” 2014.
[3] Y. Liu, L. Liu, Z. Yan, and J. Hu, “The algorithm of multi-source to

multi-sink traffic scheduling,” in 2021 17th International Conference on
Mobility, Sensing and Networking (MSN), 2021, pp. 638–644.

[4] R. Ahlswede, Ning Cai, S. . R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, July 2000.

[5] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[6] P. Schwenteck, S. Zimmermann, C. von Lengerke, J. A. Cabrera, and
F. H. Fitzek, “Revisiting MARS: storing coded packets In-Advance
for IPFS,” in 2024 IEEE International Conference on Communications
(ICC): Communication Software and Multimedia Symposium (IEEE
ICC’24 - CSM Symposium), Denver, USA, Jun. 2024.

[7] “New improvements to ipfs bitswap for faster
container image distribution,” https://blog.ipfs.tech/
2020-02-14-improved-bitswap-for-container-distribution/, accessed:
2024-03-11.

[8] B. Cohen, “Incentives build robustness in bittorrent,” Workshop on
Economics of PeertoPeer systems, vol. 6, 06 2003.

[9] R. L. Xia and J. K. Muppala, “A survey of bittorrent performance,” IEEE
Communications Surveys & Tutorials, vol. 12, no. 2, pp. 140–158, 2010.

[10] A. Qureshi, “Exploring proximity based peer selection in bittorrent-like
protocol,” MIT, vol. 6, p. 824, 2004.

[11] L. Zhang, J. K. Muppala, and W. Tu, “Exploiting proximity in coop-
erative download of large files in peer-to-peer networks,” in Second
International Conference on Internet and Web Applications and Services
(ICIW’07), 2007, pp. 1–1.

[12] N. Drucker, S. Gueron, and V. Krasnov, “The comeback of reed
solomon codes,” in 2018 IEEE 25th Symposium on Computer Arithmetic
(ARITH), 2018, pp. 125–129.

[13] P. Corbett et al., “Row-diagonal parity for double disk failure correc-
tion,” in Proceedings of the 3rd USENIX Conference on File and Storage
Technologies. San Francisco, CA, 2004, pp. 1–14.

[14] H. P. Anvin, “The mathematics of raid-6,” 2007.
[15] X. Xie et al., “Az-code: An efficient availability zone level erasure code

to provide high fault tolerance in cloud storage systems,” in 2019 35th
Symposium on Mass Storage Systems and Technologies (MSST), 2019,
pp. 230–243.

[16] Y. Hu et al., “Ncfs: On the practicality and extensibility of a network-
coding-based distributed file system,” in 2011 International Symposium
on Networking Coding, 2011, pp. 1–6.

[17] A. Marandi, H. Sehat, D. E. Lucani, S. Mousavifar, and R. H. Jacobsen,
“Network coding-based data storage and retrieval for kademlia,” in 2021
IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021,
pp. 1–7.

[18] B. Veeravalli, D. Ghose, and T. Robertazzi, “Divisible load theory:
A new paradigm for load scheduling in distributed systems,” Cluster
Computing, vol. 6, pp. 7–17, 01 2003.

[19] M. Abdullah and M. Othman, “Cost-based multi-qos job scheduling
using divisible load theory in cloud computing,” Procedia Computer
Science, vol. 18, pp. 928–935, 2013, 2013 International Conference on
Computational Science. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050913004018

[20] T. Wu, M. Li, and M. Qi, “Optimizing peer selection in bittorrent
networks with genetic algorithms,” Future Generation Computer
Systems, vol. 26, no. 8, pp. 1151–1156, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X1000110X

[21] P. Schwenteck, S. Zimmermann, C. von Lengerke, C. Scheunert, and
F. H. Fitzek, “NET playground - a Multi-Functional testbed for dis-
tributed systems,” in 2024 IEEE International Black Sea Conference on
Communications and Networking (BlackSeaCom) (IEEE BlackSeaCom
2024), Tbilisi, Georgia, Jun. 2024, p. 5.98.

395

