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Abstract—Breast cancer is one of the most common and deadly
diseases worldwide, making early and accurate detection critical
for improving patient outcomes. Machine learning has shown
significant promise in automating breast cancer diagnosis, but
selecting the right features and optimizing model performance
remain challenging. In this context, this work provides an
AI-enabled method employing an AdaBoost model optimized
using Salp Swarm Optimization (SSO) for feature selection and
Sparrow Search Algorithm (SSA) for hyperparameter tuning
for breast cancer detection. Our proposed model attained an
accuracy of 99.12%, precision (99.13%), recall (99.12%), and
F1-score (99.12%). The findings show that the suggested method
offers a dependable and efficient way to identify breast cancer,
therefore greatly raising the diagnostic accuracy in medical
systems.

Index Terms—Breast Cancer Diagnosis, AdaBoost, Salp Swarm
Optimization (SSO), Sparrow Search Algorithm (SSA), Machine
Learning Optimization

I. INTRODUCTION

Breast cancer remains one of the most prevalent malignan-
cies among women globally, characterized by the uncontrolled
growth of breast cells leading to tumor formation. Early
detection is crucial as it significantly enhances survival rates
and treatment outcomes. The role of technology, particularly in
diagnostic imaging and artificial intelligence (AI), has become
increasingly vital in improving the accuracy and efficiency of
breast cancer diagnosis[1, 2].

Diagnostic imaging techniques, such as mammography and
ultrasound, are foundational in the early detection of breast
cancer. Mammography, a specialized X-ray imaging technique,
is particularly effective in identifying abnormalities that may
not be palpable during physical examinations. It allows for the
visualization of microcalcifications and other subtle changes in
breast tissue, which are often early indicators of cancer [3, 4].
Ultrasound complements mammography by providing real-
time imaging and is especially useful in differentiating be-
tween solid and cystic masses [5, 6]. The integration of these
imaging modalities enhances the diagnostic process, enabling
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healthcare providers to make informed decisions regarding
further intervention or treatment.

A. Contribution

This paper introduces an approach for breast cancer diag-
nosis by optimizing the AdaBoost model using Salp Swarm
Optimization (SSO) for feature selection and Sparrow Search
Algorithm (SSA) for hyperparameter tuning.

B. Organization

The remainder of this paper is organized as follows: Section
2 reviews the state-of-art models. Section 3 describes the
proposed methodology. Section 4 presents the experimental
setup, the evaluation metrics used, the results obtained, and
a comparative analysis with other state-of-the-art models.
Section 5 concludes the paper with a summary of the findings
and suggests possible directions for future work.

II. RELATED WORK

Vijayasarveswari et al. [7] propose a Statistically Modelled
Feature Selection (SMFS) method for breast cancer detection
using microwave technology. The contribution lies in combin-
ing the best feature extraction method (Statistical features) and
feature selection method (Neighbour Component Analysis) to
improve accuracy. The model achieves 85% accuracy. Gupta
et al. [8] presents the W-RLG Model, a novel deep learning
approach combining Whale Optimization, RNN, LSTM, and
GRU to enhance cyber threat detection in healthcare IoT
systems.

Suhiman et al. [9] propose evaluating feature selection
methods (IG, ReliefF, mRMR) on mRNA expression data for
breast cancer diagnosis, achieving the highest accuracy with
mRMR and RF classifier using the top 25 genes. They also
suggest that a hybrid approach (mRMR + SVM) improved
accuracy with only the top 3 ranked genes. Kaushik and
Gandhi [10] proposes an Access Control-based Trust Model
for Healthcare Systems, ensuring only trusted and authorized
users can access cloud-based EHRs. The model enhances the
accuracy and efficiency of data access in cloud-integrated
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healthcare systems. Onyebuchi et al. [11] constructs an enter-
prise cloud data warehouse for e-healthcare organizations, in-
tegrating medical/clinical workflows and enabling centralized
storage of patient information. It supports medical software
automation, hardware integration, and improved e-healthcare
information management.

Akbar et al. [12] propose a breast tumor segmentation tech-
nique that combines contextual mapping using Swin Trans-
former with advanced edge analysis from DCE-MRI scans.
Yu and Reiff-Marganiec [13] introduces a Causal Probability
Description Logic Framework that integrates NLP, causality
analysis, and extended knowledge graph technologies to en-
able machines to learn and infer causal relationships among
diseases, symptoms, and other health facts. It demonstrates the
framework’s effectiveness by processing 801 diseases.

He et al. [14] propose a novel one-class classification
approach combining double kernel mapping and a modified
autoencoder based on the Broad Learning System (DKVBLS-
AE) to enhance anomaly detection, particularly in medical
datasets with imbalanced classes. Xiao et al. [15] proposes the
PCE-CF service recommendation framework, which uses an
embedded user portrait model to provide personalized recom-
mendations for senior care services. It incorporates dynamic
behavior modeling, location context, and deep learning for
improved efficiency and feasibility. Zhang et al. [16] propose
a category-weight instance fusion learning model for unsuper-
vised domain adaptation in breast cancer diagnosis. Their key
contribution is the integration of a category-weighted contrast
knowledge distillation module to align domains at a category
level and an instance-aware feature mixing module to enhance
image style consistency across domains.

III. PROPOSED WORK

This section presents the details of proposed model. As
Figure 1 shows, the procedure starts with data preprocess-
ing—including cleaning and balancing—then proceeds with
Salp Swarm Optimization’s (SSO) feature selection. The SSO
method repeatedly generates fitness values and updates local
and global best solutions, thereby optimizing the feature
set. Training and testing datasets then separate the chosen
characteristics. Using the Sparrow Search Algorithm (SSA),
which modifies AdaBoost’s hyperparameters for enhanced
model performance, hyperparameter tweaking helps to better
optimise the training dataset. Following training, the AdaBoost
classifier produces test data output predictions that provide a
consistent breast cancer diagnosis tool.

A. Data Preprocessing

After collecting the breast cancer dataset, data preprocessing
is performed, which includes label encoding and normaliza-
tion.

a) Label Encoding:: Categorical labels, such as ’Benign’
and ’Malignant’, are converted to numeric values as follows:

L =

{
0 for Benign
1 for Malignant

(1)
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Fig. 1: Proposed Model

Normalization: The features are normalized using min-max
normalization to bring them to a similar scale:

xnorm =
x− xmin

xmax − xmin
(2)

where xnorm is the normalized value, and xmin and xmax are
the minimum and maximum values of feature x.

B. Feature Selection using Salp Swarm Optimization (SSO)

The Salp Swarm Optimization (SSO) algorithm is used to
select the most relevant features from the dataset.

– Position update for the leader salp:

xi
1(t+ 1) = xi

1(t) + c1 ×
(
c2 ×

ubi − lbi
2

+ lbi

)
(3)

where:
– xi

1(t) is the position of the leader salp in the search
space,

– ubi and lbi are the upper and lower bounds,
– c1 and c2 are random coefficients.

– Position update for the follower salps:

xi
j(t+ 1) =

xi
j−1(t) + xi

j(t)

2
(4)

– Fitness function: The fitness function evaluates the qual-
ity of the selected features based on classification accu-
racy:

F (x) =
1

1 +A(x)
(5)

where A(x) represents the accuracy of the classifier for
feature subset x.

C. Hyperparameter Optimization using Sparrow Search Algo-
rithm (SSA)

After selecting the features, the Sparrow Search Algorithm
(SSA) is used to optimize the hyperparameters of the Ad-
aBoost classifier.
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Position update in SSA

xi
j(t+1) = xi

j(t)+α×(xi
best−xi

j(t))+β×(xi
j(t)−xi

worst) (6)

where:
– xi

best and xi
worst are the best and worst positions in the

population,
– α and β are random step size control variables.

D. AdaBoost Classifier

Finally, the optimized AdaBoost classifier is used for train-
ing and making predictions.

– Weight update: For incorrectly classified samples:

wi+1 = wi × exp (αt · I(yi ̸= ht(xi))) (7)

where:
– wi is the weight of the i-th sample,
– αt is the weight of the t-th weak learner,
– I(yi ̸= ht(xi)) is the indicator function that checks

if the prediction was incorrect.
– Final Prediction:

H(x) = sign

(
T∑

t=1

αtht(x)

)
(8)

where T is the total number of weak learners, and αt

is the contribution of each weak learner to the final
prediction.

IV. RESULTS AND DISCUSSION

A. System Information

Operating on a Linux-based environment with an x86 64
architecture, our system was utilized to create the proposed
model with two physical core and four logical core parallel
processing capabilities. With 32 GB accessible and 34 GB of
RAM overall, it guarantees plenty of memory for machine
learning chores. The system boasts 2.29 TB of free data
storage out of 8.65 TB of disk capacity. With almost all of
its 16 GB RAM accessible, a Tesla P100-PCIE-16GB GPU
offers model-training high-performance capability.

B. Dataset Representation

We used a Kaggle breast cancer dataset for this study,
which has thirty features characterizing different traits of cell
nuclei seen in digitalized pictures of breast masses. The dataset
has two loabels : M (Malignant) for malignant cells and B
(Benign) for non-cancerous cells.

As shown in Figure 2, the collection comprises 357 benign
and 212 malignant tagged samples. The uneven character
of this distribution—more benign instances than malignant
ones—may affect the learning process of the model. In health-
care uses like breast cancer diagnosis, where misclassification
may have major effects, ensuring balanced model performance
on both classes is very vital.
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Fig. 2: Class Distribution

C. Performance of Salp Swarm Optimization (SSO)

In this work, we used the Salp Swarm Optimization (SSO)
method for feature selection to enhance the efficiency and
performance of the AdaBoost model in breast cancer diag-
nosis. Designed on the swarming behavior of salps in the
water, SSO is a bio-inspired method used for navigation and
searching for the ideal collection of characteristics in high-
dimensional datasets. Out of the initial thirty characteristics,
we found the sixteen most important ones by using SSO on our
dataset. These characteristics significantly help to differentiate
benign from malignant tumors precisely, hence lowering the
computational complexity of the model and still maintaining
good prediction accuracy.
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Fig. 3: Diversity Measurement Chart

Figure 3, the Diversity Measurement Chart, shows how
population variety changed throughout many rounds of the
optimization process. This variety guarantees the algorithm’s
exploring capacity, therefore preventing it from being caught
in local minima throughout the feature-selecting phase. With
peaks at iterations 2 and 9 representing the dynamic behavior
of the algorithm during the search for the best features, the
diversity displays oscillations across the iterations, as shown
in the image.

Furthermore, shown on the Runtime Chart (Figure 4) is the
iteration time taken for optimization. The runtime exhibits mi-
nor fluctuations among runs, with a clear rise at iteration five,
peaking at around 4.6 seconds before steadying in following
iterations. This runtime efficiency emphasizes that the SSO
method is computationally controllable, which qualifies for
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Fig. 4: Runtime Measurement Chart

feature selection in machine learning applications, including
big datasets.

D. Performance of Sparrow Search Algorithm (SSA)

Following feature selection using the SSO method, we
used the Sparrow Search Algorithm (SSA) to hyperparameter
optimization of the AdaBoost model.

Figure 5a, the Diversity Measurement Chart, demonstrates
how population variation falls with successive rounds. This
slow decrease in variety suggests that the SSA method is
heading toward a best answer. While subsequent rounds em-
phasize the exploitation of the most promising areas in the
search space, early iterations exhibit more variety, suggesting
the study of a broad range of possible solutions.

During the optimization phase, the Exploration vs. Ex-
ploitation Chart (Figure 5b) shows even more the harmony
between exploration and exploitation. The algorithm moves
from exploration (blue line) to exploitation (green line) as
the count rises. This change guarantees that the SSA focuses
on improving the best solutions discovered throughout the
process.

Furthermore shown in Figure 5c is the Global Objectives
Chart, which demonstrates how the objective value—that of
the AdaBoost model’s error or loss—reaches a steady mini-
mum after few iterations. This suggests that SSA effectively
tuned the hyperparameters to reduce the error rate of the
model, hence enhancing its predictive ability.

At last, the runtime chart (Figure 5d) displays SSA’s
iteration-time consumption. More iterations cause a little in-
crease in runtime; it peaks at iteration 8. The runtime stays
within a reasonable range despite occasional variations, hence
SSA is a time-efficient technique for hyperparameter tuning.

E. Performance of Proposed Model

We trained the AdaBoost model for breast cancer detection
following the optimal hyperparameter acquisition using the
Sparrow Search Algorithm (SSA). We computed the classi-
fication report, which comprises measures of precision, recall,
and F1-score for every class, to assess its performance (Table
I).

With an overall accuracy of 99%, the model performed
rather well—that is, it correctly identified 99% of the samples.
The model showed an accuracy of 0.99, a recall of 1.00,

and an F1-score of 0.99 for the benign class (label 0), hence
effectively identifying almost all benign instances free from
numerous false positives. Reflecting its capacity to precisely
identify malignant instances, with just a tiny number of false
negatives, the model attained an accuracy of 1.00, a recall of
0.98, and an F1-score of 0.99 for the malignant class (label
1).

TABLE I: Classification Report

Precision Recall F1-score Support
0 0.99 1.00 0.99 71
1 1.00 0.98 0.99 43

accuracy 0.99 114
macro avg 0.99 0.99 0.99 114

weighted avg 0.99 0.99 0.99 114

Plotting the confusion matrix (Figure 6) helped us evaluate
the improved AdaBoost model even further. The matrix offers
an unambiguous picture of the forecasts of the model. With no
false positives (top-left cell), the program properly identified
all 71 benign instances. With only one false negative (bottom-
left cell), the model correctly recognized 42 out of 43 instances
for malignant cases, therefore misclassifying just one malig-
nant case as benign. This validates the great accuracy and
potency of the model in differentiating benign from malignant
breast cancer patients.

F. Comparative Analysis

We evaluated our suggested method’s performance against
several different machine learning models, including SVM,
Logistic Regression, Gradient Boosting, Extra Trees, K-
Nearest Neighbors, Naive Bayes, XGBoost, CatBoost, Light-
GBM, and Random Forest. Key measures including accuracy,
precision, recall, and F1-score formed the basis of the assess-
ment (Table II).

With a 99.12% accuracy level, the proposed model exceeded
all others. With an accuracy of 98.25%, Extra Trees and
XGBoost—the next best-performing models—also performed
really well. At 97.37%, other models like Random Forest,
Catboost, and LightGBM exhibited somewhat lower accuracy.

With regard to precision, the suggested model once more
scored the highest—99.13%, suggesting that it generated
rather few false positives. Closely behind with a 98.29%
accuracy, XGBoost and Extra Trees.

With a recall of 99.12%, well above the competing models,
the suggested model showed better performance for recall,
which gauges the capacity to properly detect positive instances
(malignant).

Reflecting its general balanced performance in both preci-
sion and recall, the F1-score—which is the harmonic mean
of accuracy and recall—was greatest for the suggested model
at 99.12%, surpassing other models like Extra Trees and
XGBoost.

These results in Table II show that our suggested method
offers superior performance across all evaluation criteria com-
pared to other machine learning models.

283



0 2 4 6 8 10 12

#Iteration

1

2

3

4

5

D
i
v
e
r
s
i
t
y
 
M
e
a
s
u
r
e
m
e
n
t

Diversity Measurement Chart

Algorithm

(a) Diversity Measurement Chart for SSA

0 2 4 6 8 10 12

#Iteration

0

20

40

60

80

100

P
e
r
c
e
n
t
a
g
e

Exploration vs Exploitation Percentages

Exploration %

Exploitation %

(b) Exploration vs Exploitation for SSA

0 2 4 6 8 10 12

#Iteration

0.962

0.961

0.960

0.959

O
b
j
e
c
t
i
v
e
 
V
a
l
u
e

Global Objectives Chart

(c) Global Objectives Chart for SSA

0 2 4 6 8 10 12

#Iteration

40

41

42

43

44

45

46

S
e
c
o
n
d

Runtime chart

(d) Runtime Chart for SSA

Fig. 5: Performance of Sparrow Search Algorithm (SSA)
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V. CONCLUSION

Using AdaBoost, enhanced by SSO for feature selection and
SSA for hyperparameter tuning, we presented an AI-enabled
breast cancer diagnostic model in this work. We improved the
model’s prediction performance and efficiency by selecting the
16 most important features with the help of SSO. Overcoming
various models like XGBoost, LightGBM, and Random Forest,
the suggested approach obtained an accuracy of 99.12%. In the

TABLE II: Comparative Analysis

Model Accuracy Precision Recall F1-Score
SVM 0.9649 0.9652 0.9649 0.9647
Logistic Re-
gression

0.9649 0.9668 0.9649 0.9645

Gradient
Boosting

0.9737 0.9737 0.9737 0.9736

Extra Trees 0.9825 0.9829 0.9825 0.9824
K-Nearest
Neighbors

0.9737 0.9737 0.9737 0.9736

Naive
Bayes

0.9649 0.9668 0.9649 0.9645

XGBoost 0.9825 0.9829 0.9825 0.9824
CatBoost 0.9737 0.9737 0.9737 0.9736
LightGBM 0.9737 0.9737 0.9737 0.9736
Random
Forest

0.9737 0.9748 0.9737 0.9735

Proposed
Model

0.9912 0.9913 0.9912 0.9912

future, we will plan to test the model or wider database and
in real-world scenarios.
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