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Abstract—Federated learning (FL) is a method that leverages
data from multiple sources to enhance deep learning models
while safeguarding data privacy. This approach finds applications
in diverse domains such as healthcare, entertainment, and user
experience enhancement. Despite its effectiveness, FL’s perfor-
mance is still low compared to centralized training methods,
necessitating further improvements. Particularly in critical areas
such as medicine, where accurate model predictions are crucial,
conventional FL algorithms fall short compared to centralized
training. This study introduces a new training approach to
further improve the vanilla FL algorithm. Our proposed method
takes advantage of feature-based adjustments using cosine angles
by incorporating an angular margin loss function alongside
the cross-entropy loss. It notably enhances the accuracy of the
aggregated models on datasets such as MNIST, CIFAR10, and
CIFAR100 while maintaining FL’s privacy-preserving attributes.
Moreover, we conduct a comprehensive comparative analysis of
the proposed method against existing FL algorithms to evaluate
the impact of the angular margin loss function on the learning
process. Our experimental results underscore the effectiveness of
the proposed algorithm when compared with standard bench-
marks, proving its potential to advance the field of FL.

Index Terms—Federated learning (FL), Angular margin loss,
Decentralized training, Data heterogeneity, Representation learn-
ing, Personalized Federated Learning (PFL)

I. INTRODUCTION

In recent years, the increase of big data has catalyzed signifi-
cant advancements across academic and industrial, particularly
focusing on the artificial intelligence (AI) field. This increase
in data has enabled the development of more precise and
rapid AI models that find practical applications in various
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Fig. 1: Our training strategy. (1) The model’s weight and
feature vectors are initialized on the server and distributed
to all clients. (2) Each client loads the received weight and
conducts training with its local dataset. This process includes
aligning the local feature vector and minimizing the objective
loss function (3). After training for a set number of epochs, the
client returns the updated model weight and feature vectors to
the server. (4) The server executes an aggregation algorithm
to combine the received weights and feature vectors from all
clients. This iterative process is repeated until an interrupt sig-
nal is received or the model achieves the desired performance.
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fields of our daily lives. As a result, AI has been applied
to numerous domains, such as user experience enhancement,
customer service, healthcare, and even military operations [1]–
[4]. By taking advantage of vast datasets for training, AI
models have moved closer to human-level decision-making
capabilities in tackling complex tasks. However, acquiring
datasets for training poses a challenge for researchers and
businesses. They must guarantee data privacy preservation
to safeguard user information while maximizing operational
efficiencies to increase profits. The conventional approach
of storing large datasets in centralized data centers demands
substantial resources and may expose users to potential data
leaking.

To tackle this problem, federated learning (FL) [5] emerges
as a distributed training strategy. FL removes the need to
store data in the data center for training purposes while still
delivering outstanding performance comparable to centralized
training methodologies. FL thus offers an efficient solution that
guarantees data privacy and optimal resource utilization. FL
leverages distributed training, taking advantage of the compu-
tational capabilities of both servers and clients. As illustrated
in Fig 1, the AI model undergoes training solely on the client’s
resources using its local dataset. Subsequently, only the model
weights are transmitted to the server for aggregation. This
approach guarantees that users’ data remains on their devices,
preserving privacy while enabling them to benefit from other
datasets through collaboration with other clients. Furthermore,
this strategy reduces the demand for central resources while
harnessing the diverse computational capabilities of individual
clients. Therefore, FL offers a valuable solution that guarantees
data privacy preservation and operational efficiency in the fast-
growing big data.

Numerous recent FL algorithms [5]–[13] have been devel-
oped to address these challenges and enhance aggregation
techniques for improving performance. However, applying
these algorithms to real-world scenarios often results in a
significant drop in model efficiency, as indicated in [7]. One
challenge of real-world application lies in the presence of
heterogeneous data, which poses a difficulty in effectively
preserving the valuable features of the client models. Due
to the non-IID (Non-independent identifies distributed) data
distribution of different clients, each client may lack complete
representation of all classes within its local dataset. Conse-
quently, this scenario makes each client converge solely toward
the local minimum of its dataset, disregarding the broader
context of balancing client and server model minimums across
all shared datasets.

To tackle this challenge, various strategies are applied that
consider the similarities among clients’ model weights before
executing aggregation processes. This methodology, utilized
by FeSem [8], underscores the significance of clustering
clients’ model weights within the aggregation algorithm. In
the context of FeSem, clients with similar model weights are
consolidated into groups to generate new composite weights.
Subsequently, the final model is aggregated based on these
new weights, thereby mitigating dissimilarities among the

models and improving the model performance. This clustering
approach is also utilized in DemLearn [10], wherein nodes
(clients) are updated based on their position within a tree graph
structure. In DemLearn, each node exclusively communicates
with its nearest higher or lower node in the tree, minimizing
discrepancies among node weights. The construction of the
tree graph in DemLearn is based on the similarity of node
weights, facilitating the formation of a weight aggregation
graph. This methodology enables flexibility among clients
within the graph, augmenting the final model’s performance
by aligning the distribution of the global model with that of
the individual node models and vice versa.

Another approach to this challenge is to train a feature-
based model by fine-tuning the feature vectors during the
training phase. This approach trains the model to represent
samples in a high-dimensional space. Acting as an encoder,
the model transforms each sample into a feature vector that
encapsulates information specific to that sample. Subsequently,
these feature vectors can be adjusted based on Euclidean
distance, Cosine angles, or feature-based loss function. One
of the first algorithms that adopt this approach in FL is
MOON [9], which leverages contrastive learning to refine the
feature vectors of local and global models. By integrating the
contrastive loss function with the conventional cross-entropy
loss, MOON has demonstrated a notable enhancement in FL
performance compared to FedAvg [5]. Similarly, FedSeg [7]
is another innovative approach that harnesses the feature-
based methodology to improve FedAvg’s performance. Fed-
Seg achieves this by aligning the local pixel embeddings
with the global pixel embeddings through the contrastive
loss function in the context of semantic segmentation tasks.
FedSeg has shown significant improvement in model accuracy
and efficiency through experiments with its pixel embedding
representation in high-dimensional space.

Based on the potential of feature-based learning, this paper
proposes a new FL methodology for classification tasks illus-
trated in Fig. 1 to address the challenges outlined earlier. Our
proposed method integrates the angular margin loss function
with the conventional classification loss function to balance the
model’s classification accuracy and feature representation, as
shown in [14]. In detail, it leverages ArcFace [15] to fine-tune
the feature vectors while concurrently harnessing the cross-
entropy loss function to enhance prediction performance. By
applying feature-based learning within the FL framework, our
method enables local models to achieve a better local mini-
mum, aligning with the global minimum during optimization.
This strategic fusion of techniques in our method underscores
its potential to optimize classification tasks within the FL
domain.

To summarize, the contributions of this paper are as follows:
• We propose a new FL method that adjusts feature vectors

based on the angular margin loss function to improve the
performance of the global model.

• We provide experiments and analysis on three classifi-
cation datasets to evaluate our proposed method for the
classification FL problem.
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The remainder of this paper is structured as follows. Sec-
tion II describes our proposed method and loss functions. Sub-
sequently, insights from experimental results and our analysis
are presented in Section III. Finally, Section IV summarizes
the study’s discoveries.

II. METHODOLOGY

A. Federated Learning

As depicted in Fig. 1, the FL algorithm includes four steps
for training and aggregating a global model. Suppose there are
K clients, each with a local dataset Dk. To optimize the perfor-
mance of the global model over the dataset D := ∪k∈[K]Dk,
the training strategy aims to identify a weight w that minimizes
the following function:

argmin
w

f(w) =
K∑
k

|Dk|
|D|

Fk(wk) (1)

where f(w) is the global objective function, Fk(wk) is
the local objective function which is define as Fk(wk) :=∑nk

i=1 L(xi, yi, wk) where L(.) is the loss of prediction on
example (xi, yi) made with model parameters w of kth client
and total client sample nk := |Dk|.

Equation 1 outlines how the global model is updated,
considering the proportion of a client’s sample size relative to
total samples across all clients’ datasets. Despite overlooking
dissimilarities among the model weights, this updating process
consistently shows considerable performance enhancements
for the global model. In fact, FedAvg has underscored the
efficiency of this methodology through comprehensive experi-
mental validations. Our study uses FedAvg as the baseline for
our development and comparative analysis.

B. Angular Margin Loss function

In deep learning, a model makes predictions based on
the feature vector, which is a structured set of numerical or
categorical values representing the essential characteristics of
a data point extracted by a feature extractor network. The
accurate representation of these features is crucial for the
model’s performance, as it influences the model’s ability to
learn from the data and generalize effectively. Well-crafted
feature vectors effectively capture relevant information and
relationships within the dataset, enabling models to make
accurate predictions or classifications. On the other hand,
poorly defined features can significantly impact the model’s
performance, resulting in suboptimal outcomes.

To improve the representation of feature vectors, a straight-
forward approach is bringing similar vectors closer and push-
ing dissimilar vectors farther apart. This objective can be
achieved by minimizing the Euclidean distance or maximizing
the Cosine similarity score between two similar vectors as
utilized in TripLet [16]. An alternative method for representa-
tion learning is fine-tuning feature vectors according to cosine
angles. Instead of aligning feature vectors solely based on
Euclidean distances, ArcFace [15] introduces a loss function
that integrates cross-entropy loss, softmax function, and the

final fully connected layer. The fundamental concept of this
algorithm is to factorize the separability between samples
and parameters into components of amplitude and angular
variations using cosine similarity. The formula below provides
the computation process for the last linear layer:

logits =
nk∑
i

WT z(xi, yi, wk) + b (2)

where logits are the output of the final classifier layer with
the weight matrix W ∈ Rd×c and bias vector b ∈ Rc, d is the
dimension of the preceding linear layer and c is the number of
classes in the dataset, z(xi, yi, wk) denotes the feature vector,
which serves as the output from the layer just before the final
layer. Based on the cosine similarity formula between two
vectors, the Equation 2 can be rewritten as follows:

logits =
nk∑
i

||WT ||||z(xi, yi, wk)|| cos(θ) + b (3)

where θ is the angle between each vector in the weight matrix
and the feature vector. To reduce the dependent variable of
Equation 3, ArcFace [15] sets b = 0, and ||WT || = 1,
||z(xi, yi, wk)|| = 1 by normalizing the them before calculat-
ing the logits. Consequently, Equation 3 will only rely on the
θ value. A margin ’m’ is added to θ to establish a distinct
boundary between disparate vectors. By incorporating this
margin, a clear separation is enforced, enhancing the model’s
discriminative ability. Finally, this loss function leverages the
cross-entropy loss to quantify the alignment between predicted
and actual classes. The final angular margin loss function [15]
(Larc) can be presented as follows:

Larc =
1
nk

∑nk

i −log

(
es(cos(θyi+m))

es(cos(θyi+m))+
∑c

j,j �=yi
es(cos(θj))

)
(4)

where s is a scale value, which is a hyper-parameter used to
rescale the logits, θyi

is the angle between the feature vector
and the ground truth vector in the weight matrix.

C. Additive Angular Margin Loss for Federated Learning

Based on the above techniques, we introduce a new frame-
work that enhances FL performance by integrating Larc. Our
method takes advantage of representation learning while still
maintaining the vanilla cross-entropy loss (Lce) to improve the
performance of models. In detail, the Larc will be added as
another loss function head in the training process. Thus, the
local objective function of each client is as follows:

L(x, y, w) = Lce(x, y, w) + λLarc(x, y, w) (5)

where λ is a hyper-parameter that controls the effect of
representation learning on the final loss function. This function
encapsulates the customized objective tailored for individual
clients within the FL setting, combining the primary Lce

with the Larc to optimize model parameters effectively. Our
method presents a promising avenue for enhancing FL out-
comes by leveraging representation learning and specialized
loss functions. It replaces the previous LocalUpdate in the
original FedAvg algorithm [5] with ClientUpdate, showing in
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Algorithm 1 to combine representation learning with special-
ized loss functions. Our algorithm focuses on local objective
updates to improve the performance of the global model
compared to the vanilla algorithm.

Algorithm 1 Total number of clients K, local batch size B,
number of client epochs E, number of communication rounds
R, learning rate γ, random fraction C for selecting the clients
participating in training each round, feature vector F .
ServerExecute

1: Procedure SERVEREXECUTE(K, C, E, R, B, γ)
2: initialize w0, F0

3: t ← t = 0
4: while t < R do
5: m ← max(C ×K, 1)
6: St ← (random set of m clients)
7: for each client k ∈ St do
8: wk

t+1, F
k
t+1 ← ClientUpdate(k,E,B, γ, wt, Ft)

9: end for
10: wt+1 ←

∑|St|
k

nk

n wk
t+1

11: Ft+1 ←
∑|St|

k
nk

n F k
t+1

12: t ← t+ 1
13: end while
14: End Procedure
ClientUpdate

1: Procedure CLIENTUPDATE(k, E, B, γ, w,F )
2: B ← split Dk into batches of size B
3: e ← 0
4: while e < E do
5: for batch b ∈ B do
6: x, y ← b
7: L(x, y, w) ← Lce(x, y, w) + λ× Larc(x, y, w, F )

8: w ← w − γ ∂L(x,y,w)
∂w

9: F ← F − γ ∂L(x,y,w)
∂F

10: end for
11: e ← e+ 1
12: end while
13: return w,F
14: End Procedure

As depicted in Fig. 1 and Algorithm 1, the model is trained
to generate feature vectors similar to the global feature vectors
within the same class. This learning approach facilitates local
models in converging towards the global optimal point during
optimization, thereby enhancing the performance of the global
model. Moreover, the local models help refine the global fea-
ture vectors to identify the most suitable ones that effectively
accommodate all clients’ datasets.

III. EXPERIMENT RESULTS

A. Dataset

The experiments explore the performance of our algorithm
across three benchmark datasets: MNIST [17], CIFAR10 [18],
and CIFAR100 [18]. The experimental design involves an
approach to data partitioning. CIFAR10 follows an IID split

approach, while MNIST and CIFAR100 follow a non-IID
partitioning approach. This partitioning approach leverages the
unique characteristics of each dataset to investigate the impact
of varying data distributions.

1) IID partitioning approach: In the context of IID, the ex-
periments are solely performed on the CIFAR10 [18] dataset.
The implementation utilizes the StratifiedKFold functionality
from the Scikit-learn [19] library to construct the IID dataset.
The number of folds in StratifiedKFold is the number of clients
within the system. Under this methodology, each client is
mapped with the test set from each fold, serving as a local
training dataset splitting from the CIFAR10 training set. This
approach guarantees that every client has an equal number
of total samples and maintains an identical distribution of
samples across all classes in the dataset.

2) Non-IID partitioning approach: In the non-IID context,
our experiments utilize the MNIST [17] and CIFAR100 [18]
datasets to evaluate the efficiency of the proposed method-
ology. Unlike the IID scenario, each client within our non-
IID partitioning has a maximum of three classes represented
in its local dataset. The initial step in constructing this non-
IID dataset involves sorting the dataset based on sample la-
bels. Subsequently, leveraging parameter shards per clients,
we partition the training dataset into shards per clients ×
number of clients continuous shards, which each shard may
contain from 1 to 3 classes. These shards are then shuffled,
and shards per clients shards are assigned to each client. In
this configuration, the distribution ensures that each client’s
dataset contains an equivalent number of samples but limited
classes, thereby establishing a non-IID setup. For this setup,
the number of clients is set to 100 for MNIST and 125 for
CIFAR100. The same shards per clients is utilized in both
datasets, which is 2.

B. Hyper-parameters setup

The experiments were executed on an Ubuntu server
equipped with an NVIDIA 3080ti GPU and a Python environ-
ment. For the MNIST dataset, a simple convolutional neural
network architecture was employed. The network architecture
comprises two convolutional layers with kernel sizes of 5x5
and output channels of 32 and 64, sequentially followed by
a max-pooling layer with a kernel size of 2x2. A simple
embedding block after these two blocks was incorporated
to align the model with the Larc. This block consists of a
convolutional layer with a 1x1 kernel and 32 output channels
and a linear layer comprising 512 units. Finally, a classifier
layer is implemented to create predictions. Notably, the Larc

is integrated after the simple embedding block, and each layer
in this embedding block does not use bias in its calculation.

For the CIFAR10 and CIFAR100 datasets, a modified ver-
sion of the ResNet18 architecture [20] is employed. In this
adaptation, the traditional fully connected layer is replaced
with an embedding block inspired by the settings of Arc-
Face [15]. This block comprises a convolutional layer with
an output channel of 512 and a kernel size of 1x1, followed
by a batch normalization layer and a linear layer with 512
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units. Bias terms are removed from the calculations within
these layers. Following the embedding block, a classifier layer
is utilized to predict based on the extracted features.

The selection of additional hyperparameters is guided by
FedAvg [5] and ArcFace [15] settings. Each client undergoes
training for five epochs across 10,000 communication rounds.
The batch size is 50 for the MNIST dataset and 32 for
CIFAR10 and CIFAR100. The stochastic gradient descent
optimizer is employed with a learning rate of 0.001. The loss
function computation involves a λ value of 0.5. The margin
parameter for the ArcFace loss function is set at 0.4. For
centralized training, the model will undergo 10,000 epochs
using the same batch size for each dataset. After each epoch,
the best accuracy will be assessed to determine the model’s
optimal performance on the validation dataset.

C. Results and analysis

Table I illustrates the performance comparison of the
proposed algorithm, showcasing its effectiveness over other
methodologies. The proposed method outperforms other
approaches across the MNIST, CIFAR10, and CIFAR100
datasets. Through our non-IID problem creation, our method
demonstrates robust performance that is closely aligned with
the centralized training approach over 10,000 rounds. In
contrast, other methods struggle to reach optimal values and
necessitate additional communication rounds to enhance per-
formance on the MNIST dataset. However, when examining
FL methods on the CIFAR100 non-IID dataset, all approaches
failed to achieve similar centralized training performance.
While MNIST comprises only 10 handwritten digits, CI-
FAR100 encompasses 100 classes representing diverse com-
mon objects, making it a more complex dataset. Centralized
training on CIFAR100 achieves only 53,78% and 54,40%
accuracy for the vanilla loss function and our proposed loss
function, respectively, highlighting its complexity. Our non-
IID partitioning strategy further amplifies the challenge of
CIFAR100. The performance of all FL methods demonstrates
a significant 65% drop in accuracy compared to centralized
training.

TABLE I: Performance evaluation of our algorithm against
other methods under non-IID and IID partitioning scheme

Method non-IID IID
MNIST CIFAR100 CIFAR10

Lce
a 0.9903 0.5378 0.8039

Lce + Larc
a (Ours) 0.9900 0.5440 0.8080

FedAvg [5] 0.8873 0.1639 0.7966
FedProx [6] 0.9095 0.1613 0.7967
MOON [9] 0.9097 0.1553 0.7994

Ours 0.9866 0.1904 0.8383
a Centralized training

However, our method continues to demonstrate its potential
by achieving top performance on the CIFAR10 IID dataset.
Interestingly, our performance surpassed that of centralized
training, which has unrestricted access to the complete dataset.
This result creates our assumption that having full access to

the dataset may potentially make the model easy to overfit
on the training dataset. Conversely, FL algorithms can only
access limited datasets with sufficient samples for each class to
train models tailored to each subset, leading to superior global
minimum points for the global model compared to centralized
training. Still, this assumption needs further investigation for a
comprehensive understanding of the algorithm, so this in-depth
analysis is left to future research due to the out-of-scope of
the study.

Table II illustrates the communication rounds needed for
each algorithm to attain specific performance milestones on
the MNIST dataset. In centralized training, our proposed
loss function achieves a comparable performance level to the
vanilla loss function. Nevertheless, our proposed loss function
necessitates additional communication rounds to achieve peak
accuracy. This is the trade-off when integrating our novel loss
function into centralized training to enhance performance, as
evidenced in the CIFAR10 and CIFAR100 experiments. On
the other hand, our method achieves better performance in
the context of FL, facilitating faster model convergence while
maintaining superior performance compared to other methods.
While other approaches encounter challenges in reaching peak
performance, our method achieves higher performance with
fewer communication rounds. By incorporating the Larc to
align embedding vectors, our method effectively enhances the
aggregation of client weights in each round. However, while
the Larc enhances the global model’s performance, it also
restricts the algorithm from being used only in classification
tasks or tasks tailored to the cross entropy loss function.
This limitation reduces the flexibility of the framework to
diverse tasks, highlighting the trade-off between task-specific
optimization and generalizability within our algorithm.

TABLE II: Comparison of required rounds/epochs for achiev-
ing the desired performance of our method against other
methods on MNIST Dataset

Method Accuracy
85% 88% 90% 98% 99%

Lce
a 7 10 14 81 181

Lce + Larc
a (Ours) 7 10 14 81 189

FedAvg [5] 2273 4795 - - -
FedProx [6] 2273 5186 7697 - -
MOON [9] 2273 5412 7684 - -

Ours 651 675 713 2568 -
a Centralized training

We utilize t-SNE to visualize the embedding vectors of
individual classes extracted from the MNIST test dataset, as
depicted in Fig. 2. This visualization facilitates the evaluation
of the impact of the Larc on the feature extracted by the model.
The visualization reveals dense overlap among the training
classes when employing FedAvg [5] with the standard Lce,
as illustrated in Fig. 2a. In contrast, the embedding vectors
generated by our method, showcased in Fig. 2, display clear
separations between each class, establishing distinct bound-
aries. This clarity enables the model to effectively differentiate
between classes, thereby enhancing the overall performance
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(a) FedAvg (b) FedProx

(c) MOON (d) Ours

Fig. 2: Visualization of the embedding vectors for different
federated learning algorithms on the MNIST dataset

of the global model. Conversely, FedProx [6] and MOON [9]
exhibit high overlap similar to the FedAvg algorithm, as shown
in Figs. 2b and 2c, leading to diminished performance in their
models. Once again, these results underscore the efficiency
of feature representation learning within the FL framework,
particularly through the utilization of our algorithm.

IV. CONCLUSION

This study explores the impact of non-IID and IID scenarios
in FL using the MNIST, CIFAR10, and CIFAR100 datasets.
To enhance the performance of existing FL techniques, we
introduce a baseline approach, which combines the angular
margin loss function inspired by ArcFace [15] with stan-
dard Lce function. Through our experiments, our proposed
method demonstrates impressive accuracy across all datasets.
The angular margin loss function effectively enhances feature
representation, empowering the proposed method to tackle
both non-IID and IID challenges. However, a limitation of
our method lies in its specialization for tasks requiring cross-
entropy loss due to the design of the angular margin loss
function, which is a significant drawback. In future research,
we aim to address these constraints to develop our method to
a more general framework for FL applications.
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