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Abstract—Low-power and Lossy Networks (LLNs) are
characterized by constrained nodes with limited power,
processing capabilities, and memory, leading to challenges
such as high packet loss, low transmission rates, and
network instability. While the standardized IPv6 Routing
Protocol for LLNs (RPL) addresses some of these issues,
it falls short in dynamic IoT environments, particularly
under congestion. To enhance routing efficiency in LLNs,
this paper proposes CO-QLR (Cooperative Q-Learning-
based Routing), a novel distributed routing protocol that
leverages cooperative reinforcement learning. Unlike inde-
pendent Q-learning-based approaches, CO-QLR enables
each node to share learned metrics from its Q-table
with neighboring nodes, thereby improving load balancing
and reducing packet loss. Simulation experiments are
conducted to evaluate CO-QLR’s performance against con-
ventional independent Q-learning-based routing, demon-
strating its effectiveness in reducing message loss rate.
This study contributes a cooperative learning framework
for routing in constrained networks, showing potential for
enhancing the resilience and efficiency of LLNs in diverse
network topologies.

Index Terms—Low-power and Lossy Networks (LLNs),
Routing protocol, Reinforcement Learning, Q-Learning,
Cooperative Q-Learning

I. INTRODUCTION

Low-power and Lossy Networks (LLNs) comprise
constrained nodes with limited power, processing power,
and memory. The transmission between LLN nodes is
known to have high packet loss, low transmission rates,
and instability [1]. Therefore, the routing protocol for
LLNs must implement routing protocol that considers the
limitations and characteristics of these network nodes.

Currently, the IPv6 Routing Protocol for LLNs
(RPL) [2] is the standardized routing protocol for LLNs
to fulfill the requirements of LLN applications. Although
RPL has been standardized, it is insufficient for dynamic
IoT environments. RPL is a single path routing protocol,
wherein each node transmits messages to a preferred
parent node chosen based on its objective function. The
RPL standard defines Objective Function Zero (OF0) [3]
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and the Minimum Rank Hysteresis Objective Function
(MRHOF) [4] as objective functions in its RFC. OF0
uses only hop count as a routing metric, while MRHOF
relies solely on the expected number of transmissions
(ETX). Since RPL is designed for low-traffic scenarios,
it faces challenges with load balancing in congested
environments, which can lead to issues such as high
packet loss and increased power consumption [5].

To address the issue of congestion, proposed a rein-
forcement learning-based routing protocol in [5]. In their
approach, each node maintains a Q-table representing
routing information for neighboring nodes. This Q-table
is updated using a feedback function that reflects both the
congestion level and link quality to each neighbor. Each
node identifies the neighboring node with the minimum
Q-value in its table as the preferred forwarding node and
probabilistically selects the next-hop node based on the
values in the Q-table.

Here, instead of each node independently executing Q-
learning as in the approach in [5], we anticipate that rout-
ing performance can be enhanced through cooperative Q-
learning, where each node shares its learning state with
neighboring nodes. To the best of our knowledge, there
are two studies that have applied cooperative Q-learning
to routing: [6, 7]. The cooperative Q-learning proposed
in [6] enables newly joined nodes in a 6TiSCH network
to acquire the learning state of their parent nodes. In [7],
cooperative Q-learning is applied to ad-hoc networks,
where, upon the arrival of a packet at a neighboring
node, the neighboring node returns its Q-value to the
sender, allowing the sender node to update its own Q-
values based on those of the neighboring node.

However, in these studies, cooperative Q-learning is
implemented by having each node update its own Q-
values using the Q-values of neighboring nodes. Conse-
quently, the learning state of neighboring nodes can only
be applied to Q-values that share common information
between the node itself and its neighbors.

Accordingly, the research questions for this study are
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summarized as follows.

o Can the efficiency of network routing be enhanced
through reinforcement learning by sharing learned
knowledge among neighbors nodes? If yes, to what
degree can the routing efficiency be increased?

o For routing in IoT networks using LLNs, what
learned data that each node acquires through learn-
ing should be shared with its neighbors and how
should it be shared?

o In which network topologies can routing protocol
relying on cooperative Q-learning be most advanta-
geous?

In this paper, we propose CO-QLR (Cooperative Q-
Learning-based Routing), a routing method for LLNs
that enables efficient routing by sharing metrics de-
rived from each node’s Q-table values with neighboring
nodes. In CO-QLR, each node advertises the Q-values
associated with its neighboring nodes, obtained through
Q-learning. Using these cumulative Q-values as link
costs, each node determines its upstream node through
a distance-vector-based routing approach.

We also present experimental results of simulation,
which quantitatively demonstrate the effectiveness of
CO-QLR. This paper explores the efficacy of CO-QLR
via simulation experiments. Specifically, this study eval-
uvates and compares two routing methods: CO-QLR,
which shares each node’s learning state with its neigh-
bors, and QLR, where nodes learn Q-values indepen-
dently based on the method in [5]. The effectiveness
of the proposed approach is demonstrated by evaluating
and comparing CO-QLR and QLR performances perfor-
mance in terms of the percentage of nodes having an
available path to the sink, the average path length from
every node to the sink node, and the message loss rate
caused by the relay node.

The main contributions of this paper are summarized
as follows.

e We propose CO-QLR, a cooperative distributed
routing protocol that employs reinforcement learn-
ing. In CO-QLR, nodes disseminate a portion of
the knowledge they have acquired through learning
with their neighbor nodes.

o The performance of CO-QLR is quantitatively eval-
uated in different network topologies, which reveal
that CO-QLR outperforms the conventional fully-
independent Q-learning-based routing protocol in
terms of the message loss rate.

The structure of this paper is as follows. In Section II,
we provide an overview of related studies on routing
in LLNs and cooperative Q-learning-based routing, es-
tablishing the background for our proposed method.
Section III then presents the CO-QLR approach in detail,

explaining its design and operational principles. Follow-
ing this, Section IV describes simulation experiments
conducted to assess the performance of CO-QLR. Fi-
nally, Section V summarizes our findings and discusses
future directions for expanding this research.

II. RELATED WORKS

In RPL, OF0 and MRHOF are defined as objective
functions; however, challenges have been reported in
adapting to load balancing and network changes [1, 5,
8, 9].

To enhance the routing performance of RPL, sev-
eral machine learning-based routing methods have been
proposed in recent years. In [10], a new approach for
selecting a parent node among nodes with the same rank
is proposed using a random forest algorithm. In [11],
ML-RPL, a method that selects a parent node using the
CatBoost gradient-boosting algorithm for prediction, is
introduced.

There are several studies on machine learning-based
routing methods for LLNs, including reinforcement
learning-based approaches, which are the focus of this
study. In [5], Q-learning is applied to address the load
balancing issue in RPL networks. In [12], Q-learning
is used to solve the classic problem of finding the
optimal parent node in a tree topology within WSNs.
In [13], Q-RPL, a routing method for Advanced Me-
tering Infrastructure based on Q-learning, is proposed.
In [14], RI-RPL, which performs parent selection in
the RPL routing protocol using Q-learning, is presented.
Furthermore, the study [15] introduces RARI, a deep
reinforcement learning-based RPL routing optimization
algorithm designed to achieve load balancing and power-
efficient communication for large-scale data transfers in
RPL.

In [6], a cooperative reinforcement learning method,
ACI-RPL, is proposed, where new nodes entering
the network receive a Q-table from their parent
nodes. In ACI-RPL, when a node receives a DIS(
DODAG(Destination Oriented Directed Acyclic Graph)
Information Solicitation ) message, it responds to the
sender node with a DIO( DODAG Information Object
) message that includes its Q-table. The receiving node
combines the Q-table from the DIO message with its own
Q-table, enabling new nodes to efficiently begin learning
with knowledge acquired from their parent nodes, rather
than starting from scratch.

While not specifically targeting LLNSs, the authors of
[7] proposes a cooperative Q-learning routing method for
ad-hoc networks. In this method, upon receiving packets
from neighboring nodes, a node returns its Q-value to
the sender node during communication. The sender node
then uses the received Q-value to update its own Q-table.
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As illustrated above, RPL routing performance im-
provement has gained considerable attention, with vari-
ous researchers proposing new routing methods through
different approaches. However, to the best of our knowl-
edge, no research has implemented a cooperative Q-
learning routing approach that advertises metrics based
on each node’s Q-values.

III. CO-QLR (COOPERATIVE Q-LEARNING-BASED
ROUTING)

Each node within the LLNs can communicate with
neighboring nodes that exist within its communication
range via wireless communication. Messages generated
by each node are delivered to the sink node through
multihop communication via other nodes.

CO-QLR is an autonomous routing scheme for nodes
in an LLNSs that determines the optimal path from each
node to the sink node by using Q-learning, a type
of reinforcement learning. CO-QLR is built upon the
routing scheme cited in [5]; however, it differs in that
the Q-values are exchanged between neighboring nodes
to improve upon the traditional method of independent
Q-learning execution.

Each node on the network running CO-QLR maintains
Q-tables that stores Q-values for its neighbors, and it
periodically updates the Q-values based on a weighted
sum of the message occupancy in its own buffer (which
represents congestion in its neighboring nodes), the path
length from its neighbors to the sink node, and the
congestion level in the neighboring nodes [5].

In CO-QLR, each node maintains a Q-value for each
neighbor, following the method used by [5]. Selecting
an upstream node among its neighbors in CO-QLR
corresponds to an action, a, in Q-learning. The calculated
reward, r, in Q-learning for selecting node a as the
upstream node is given as follows [5].

r =ma <0a 1 Oa
B B

In the above equation, 6, is the buffer occupancy of the
adjacent node a; H,, the path length from adjacent node
a to the sink node; and (3, the backlog factor [5]. Unlike
in general Q-learning, a smaller reward value r indicates
a more favorable upstream node.

In CO-QLR, the upstream node (next-hop node) se-
lection differs fundamentally from the method proposed
by [5]. Instead of probabilistically selecting the upstream
node based on Q-values at regular intervals, CO-QLR
calculates a metric using the advertised Q-values from
the upstream node and the node’s own Q-value. The
reciprocal of this metric is raised to the power of d,

) 0o + Hq )

and the upstream node is chosen with a probability
proportional to the resulting value.

The distance metric, denoted by d,, ., between node u
and its neighboring node v can be calculated as

dup = dy + Qu[V] (2)

where d; is the metric advertised by the neighbor node
v and Qy[v], the metric advertised by node u to the
neighboring node v. Q,[v] is the Q-value corresponding
to the adjacent node v held by node w.

Node v then distributes

min dy 3)
vEN (u)
to its neighbors. N (u) refers to the set of neighbors for
node u.

IV. EXPERIMENT

This section evaluates the effectiveness of a routing
method using cooperative Q-learning through simula-
tion experiments. We implemented the proposed routing
method, CO-QLR, based on cooperative reinforcement
learning in Python, and developed a custom simulator
to analyze its performance. Results from this simulator
were used to assess the CO-QLR method.

As a comparison, we implemented a non-cooperative
Q-learning routing method, QLR, in Python and con-
ducted experiments under the same conditions as CO-
QLR. Notably, we did not compare with routing methods
that use the standard RPL objective functions, OF0 and
MRHOF, as the effectiveness of reinforcement learning-
based routing over traditional RPL has already been
investigated by [5]. Since the aim of this study is to
examine the potential efficiency of routing through coop-
erative reinforcement learning, we leave this comparison
for future research.

To assess the effectiveness of CO-QLR in small- and
medium-scale network environments, we conducted ex-
periments with two different scenarios. The first scenario
evaluates CO-QLR’s effectiveness in relatively small
networks, while the second scenario examines its per-
formance in larger networks where message loss is more
likely to occur. In a network comprising multiple nodes,
each client node probabilistically generated messages
and routed them to the sink node. In each experiment
scenario, we employed a grid network topology (Fig. 1).

Three metrics were used to evaluate CO-QLR: path
availability, average path length, and message loss rate.
Path availability represents the percentage of nodes that
successfully connected to the sink node across all nodes.
The average path length is the mean path length from
each node to the sink node. The message loss rate p
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Fig. 1. Network topology of a grid comprising 100 nodes

approximates the proportion of messages lost during the
simulation and is calculated as follows:

4

where p is the total message loss during the simulation,
T is the number of simulation steps, A is the message
generation rate, and N is the number of nodes excluding
the sink node.

While power consumption is a common performance
metric for routing in LLNs, we did not include it in
our evaluation due to existing studies on the overhead
associated with reinforcement learning [6]. Instead, we
consider it a subject for future research. Cooperative
reinforcement learning could be realized by periodically
advertising each node’s metrics through DIO messages,
as described in [6]. Investigations into the overhead
induced by cooperative reinforcement learning were con-
ducted by the study [6] and [5]. We defer the evaluation
of power consumption; future work should investigate
how cooperative learning influences power usage across
nodes and examine the impact of metric advertisement
frequency on routing performance.

In each experimental scenario, we performed 500
simulation runs, calculating and plotting the mean and
95 % confidence intervals for each evaluation metric.
For each simulation, each slot was set to 100 [ms],
totaling 5 [seconds] per run. Furthermore, each client ’
s Q-learning learning rate was set to 0.3, with a buffer
size of 5 [messages] and bandwidth of 1 [message/slot].
Each client was configured to send a message of size
based on a uniformly distributed random value ranging
from O to 2\ per slot to a designated parent client.

D
= PyN
P=

A. Small Scale Scenario

In the first experimental scenario, we utilized a grid
network topology consisting of 100 client nodes (see
Fig. 1). In this grid network, the top 10 clients were
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Fig. 2. Temporal variation of path availability rate

connected to the sink nodes, and the message generation
rate A for each client was set to 0.01.

The figures display the temporal fluctuations in the
path availability between client and sink nodes, the
average hop count between them, and the cumulative
number of message losses at relay nodes throughout the
simulation. Figs. 2 to 4 illustrate these variations.

As shown in Figs. 2 and 3, there is little difference in
path availability and hop count between QLR and CO-
QLR within a grid topology composed of 100 clients.
Fig. 2 depicts the temporal evolution of path availability
for all clients throughout the simulation. The results
show that path availability for both QLR and CO-QLR
approaches nearly 1 within about 0.5 seconds, indicating
that almost all clients are able to connect to the sink
nodes. This suggests that collaborative Q-learning does
not significantly impact path availability. Next, Fig. 3
illustrates the time-dependent variation in the path length
from each client to the sink node. The results show that
CO-QLR records a slightly lower path length compared
to QLR at the beginning of the simulation, but this dif-
ference diminishes as the simulation progresses. Overall,
there is no notable difference in path length due to the
use of collaborative Q-learning.

While there is little difference in path availability
and path length, Fig. 4 reveals that CO-QLR effectively
reduces message loss rates among all clients compared to
QLR. Fig. 4 shows the temporal change in the message
loss rate for each client during the simulation. The results
indicate that CO-QLR ultimately reduces the message
loss rate to approximately half that of QLR. This sug-
gests that collaborative Q-learning achieves efficient load
balancing, as it maintains comparable performance in
terms of path availability and path length while reducing
the message loss rate.
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Fig. 4. Temporal variation in the message loss rate

B. Large Scale Scenario

In the second scenario, the routing efficiency of CO-
QLR was evaluated across grid topologies of varying
scales, ranging from 3 x 3 to 30 x 30, using three
metrics: path availability, path length to the sink node,
and message loss rate throughout the entire simulation.
To further investigate the effectiveness of CO-QLR in a
more demanding environment, two message generation
rates, A = 0.1 and 0.3 [messages/slot], were set.

Fig. 5 to 7 illustrate the average path availability from
client nodes to the sink node, the average path length,
and the message loss rate for the entire simulation.

As shown in Fig. 5, unlike in the first experimental
scenario where no differences in path availability were
observed, increasing the graph scale led to a growing
disparity in path availability. In the experiment condi-
tion with the largest topology, involving 900 clients, a
comparison between CO-QLR and QLR revealed that
approximately 20 more clients were able to connect to
the sink node under CO-QLR.

According to the results in Fig. 6, CO-QLR exhibited
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Fig. 6. Changes in the path length to the sink node in response to
the increase in graph size

a higher average hop count than QLR when the network
size increased. However, as indicated by Fig. 5, there
were more nodes that could not find a path to the sink
node under QLR-based routing compared to CO-QLR.
Since unreachable paths are excluded from the hop count
observation, it is inferred that CO-QLR recorded a higher
average hop count than QLR due to its greater path
availability.

As seen in Fig. 7, similar to the first scenario, CO-
QLR was able to maintain a lower message loss rate per
client compared to QLR. The results indicate that, across
all graph scales and message generation rates, CO-QLR
achieved lower message loss rates compared to QLR,
particularly when the message generation rate was 0.1.
This suggests that CO-QLR can maintain lower message
loss rates under high-load and large-scale conditions than
QLR.

In conclusion, within grid network topologies, CO-
QLR enables communication with lower message loss
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Fig. 7. Changes in the message loss rate in response to the increase
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rates than QLR while maintaining comparable path avail-
ability and path length to the sink node. This outcome
remained consistent as graph size and the total traffic
load in the network increased.

V. CONCLUSION

In this study, we propose CO-QLR for efficient routing
using Q-learning for LLNs by sharing the Q-table value
of each node with its neighbors. Simulation experiments
show the effectiveness of the proposed scheme in terms
of the messages loss rate by the relay nodes.

Future research will examine the effectiveness of CO-
QLR from an energy consumption perspective, evaluat-
ing its performance in more realistic environments that
consider the impact of wireless links and MAC proto-
cols, thereby clarifying the effectiveness of cooperative
Q-learning. Additionally, optimizing the frequency of
cooperation and control parameters for each node will
be pursued.

Moreover, apart from the experiments conducted in
this study, 500 simulation trials were performed on a
single randomly generated topology where sink nodes
and clients were randomly placed to assess the effec-
tiveness of CO-QLR. However, no significant difference
was observed when compared to QLR. Therefore, fur-
ther studies will include experiments with a variety of
randomly generated topologies to investigate whether the
proposed method shows effectiveness in random topolo-
gies. This exploration will address whether applying the
proposed method to network topologies other than grid
networks is feasible and beneficial.
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