
A Distribution-Aware Robust Federated Learning
Framework for Mobile Edge Networks

Yu Qiao1, Phuong-Nam Tran1, and Choong Seon Hong2*
1 Department of Artificial Intelligence, Kyung Hee University, Yongin-si 17104, Republic of Korea

2 Department of Computer Science and Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
E-mail: {qiaoyu, tpnam0901, cshong}@khu.ac.kr

Abstract—Federated learning (FL) is a promising technology
for achieving edge intelligence in mobile edge networks while
preserving the privacy of local clients. However, a significant
challenge in FL is the non-IID data across clients, which can
lead to inconsistent updates between local and global models,
ultimately hindering convergence. Furthermore, recent research
has shown that FL models are susceptible to adversarial attacks,
especially in non-IID scenarios, which can significantly impair
their performance. This vulnerability poses further challenges
to achieving robust and generalizable edge intelligence. In this
paper, we first identify that the model’s predictions for classes
with fewer samples are less confident compared to those with
more samples, even in federated adversarial environments. Sec-
ond, recognizing that adversarial training (AT) is an effective
defense mechanism, we propose a distribution-aware-assisted
federated adversarial training to balance the model’s predictions.
Specifically, we suggest assigning higher scores to classes with
fewer samples and lower scores to those with more samples
during each local AT process, thereby improving the global
model’s robustness against adversarial attacks. Experimental
results on several popular datasets show that our method
achieves performance on par with or better than various baseline
approaches.

Index Terms—Mobile edge networks, federated learning, edge
intelligence, adversarial attack, non-IID.

I. INTRODUCTION

Given the significant advancements in storage and comput-
ing capabilities of edge smart devices, many computational
tasks can be executed at the edge. This progress has led to the
emergence of mobile edge networks as the next-generation
computing paradigm [1]–[4]. However, extracting data from
edge devices for edge computing involves concerns related
to data sensitivity and legal regulations [5], [6]. Therefore,
implementing mobile edge computing in a distributed and
privacy-preserving manner is becoming increasingly attractive.
To address this, federated learning (FL) has emerged as a
promising approach for achieving edge intelligence. It allows
participants to collaboratively train a shared global model by
sharing model parameters while keeping their original data
private [7], [8]. However, recent studies [9], [10] indicate
that FL, like traditional machine learning, is vulnerable to
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adversarial attacks. Attackers can create adversarial examples
(AEs) with subtle perturbations to deceive the model into
incorrect predictions during inference. This highlights the need
for a robust FL framework to counter such attacks.

To defend against such attacks, researchers commonly em-
ploy adversarial training (AT), a widely regarded method
for enhancing model robustness by incorporating adversarial
examples (AEs) into the training process [11], [12]. Building
on the effectiveness of AT in centralized machine learning,
recent studies [9], [13] propose a promising approach to
enhance the global model’s adversarial robustness by applying
AT locally. This approach is termed federated adversarial
training (FAT) [9]. However, adversarial training inevitably
results in reduced prediction accuracy on clean samples com-
pared to standard training without incorporating adversarial
processes [13]. Moreover, recent studies have revealed that the
non-IID data challenge in FAT poses relatively greater chal-
lenges for federated models compared to vanilla FL. This issue
arises primarily because non-IID data across clients causes
inconsistencies between local and global update directions,
a problem further exacerbated in adversarial environments,
ultimately hindering the convergence of federated training [8],
[14], [15]. Therefore, it is crucial to design robust federated
models that can defend against adversarial attacks even under
non-IID data challenges.

In this paper, we introduce Federated Balanced Adversarial
Learning (FBAL), a method aimed at enhancing the global
model’s adversarial robustness to adversarial attacks in non-
IID settings. We focus on label non-IID challenges, where
sample sizes across clients are unbalanced. This imbalance
causes local models to become biased towards classes with
larger sample sizes, making it more challenging to improve
robustness against adversarial attacks [9]. To this end, by
comparing the mean logits output from IID and non-IID data
settings, we observe an intriguing trend: the model trained on
a balanced dataset exhibits consistent prediction confidence
across all classes. In contrast, the model trained on a non-IID
dataset shows inconsistent prediction confidence, with higher
confidence for classes with larger sample sizes and lower
confidence for classes with smaller sample sizes. Second,
inspired by the success of AT in countering adversarial attacks,
we introduce combining AT with a balanced softmax loss
while mitigating the inconsistencies observed, thus enhanc-
ing the global model’s robustness against adversarial attacks.
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Fig. 1. Illustration of the proposed FBAL framework. We focus on steps 3
and 4 in this paper.

Specifically, by leveraging the prior distribution knowledge
from each client, we suggest assigning higher scores to classes
with fewer samples and lower scores to those with more
samples. We hypothesize that integrating these two aspects can
position FBAL as an effective approach in the face of label
non-IID and adversarial attack challenges. We summarize our
key findings and proposal as follows:

• We propose a robust federated framework by integrating
AT with a balanced softmax loss, termed FBAL. This
approach is expected to enhance the global model’s
adversarial robustness under non-IID challenges.

• We introduce a distribution-aware approach under the
FAT framework for robust FL against both non-IID and
adversarial attack challenges. We achieve this by balanc-
ing the softmax output based on the prior distribution
information for each client and employing the AT strategy
for each client.

• Experimental results over popular benchmark datasets:
MNIST [16] and FMNIST [17], demonstrate that our ap-
proach achieves a competitive performance improvement
over several baseline methods.

II. BACKGROUND

A. Vanilla Federated Learning

We consider a mobile edge network, which includes N edge
clients and a central server. Each edge client has its own private
image dataset Di. The samples and label data in this image
dataset are denoted as xi and yi, respectively. The objective
of each local client is to update the shared global model from
the server based on its own dataset. Its objective function can
be expressed as follows [18]:

Li(ωi) = − 1

|Di|
∑
i∈Di

C∑
j=1

�y=j log
ezj∑C
j=1 e

zj
, (1)

where z represents the unnormalized prediction value output
by the model, �(·) represents the indicator function, [C]

represents the label space containing C classes, and the model
parameters of each client are represented as ωi. Following
the standard federated training paradigm, the global objective
function is defined as minimizing the sum of local losses of
all distributed clients [19]:

min
ω

L =
∑
i∈[N ]

|Di|∑
i∈[N ] |Di|

Li, (2)

where |Di| denotes the size of local dataset for each client.

B. Adversarial Federated Learning

Adversarial federated learning aims to enhance the model’s
robustness against adversarial attacks by incorporating AEs
into the federated training process, enabling the model to
defend against such attacks during inference. This approach,
known as AT, involves incorporating AEs into each local
training process. Specifically, we first use the PGD algorithm
to generate AEs, and then these generated AEs are used as
inputs in each local training process. Finally, each local model
can be optimized by modifying the standard loss function in
Eq. 2:

min
ω

Ladv =
∑
i∈[N ]

|Di|∑
i∈[N ] |Di|

Ladv
i , (3)

where Ladv and Ladv
i represent the local training objective

for each local client and the global training objective at
the server during federated adversarial training, respectively.
Specifically, we generate adversarial samples by maximizing
the loss function Ladv

i = maxLadv
i . Here, x̂i represents the

AE generated for the clean sample xi of each client. The AE
generation process usually adopts the following PGD attack
iteration algorithm [12]:

xi
t+1 = Πxi+δ

(
xi

t + β sign(∇xLi(xi;ωi))
)
, (4)

where β represents the step size required for each iteration
during the attack iteration, Πxi+δ is used to limit the range of
adversarial perturbations generated, which is usually limited
to a range that is imperceptible to human eyes. In addition, xt

i

represents the adversarial sample derived during each iteration,
and sign(·) represents the sign function used to find the
gradient direction.

III. METHODOLOGY

A. Motivation

The paradigm of adversarial training is adopted by [9] in
local clients to solve the problem of clients in federated envi-
ronments being vulnerable to adversarial examples. However,
this naive process of introducing the idea of adversarial train-
ing into traditional federated learning still does not solve the
problems unique to FL, such as the non-IID data distribution
between clients. On the other hand, this approach usually
only selects part of the data for adversarial training; thus,
this may not fully utilize the diversity and complexity of
the dataset, which may have limited improvement in model
robustness. In view of this, we first examine the difference

257



0 2 4 6 8

Class

0.4

0.2

0.0

0.2

0.4

M
e
a
n

(a) IID Data Distribution

0 2 4 6 8

Class

0.4

0.2

0.0

0.2

0.4

M
e
a
n

(b) Non-IID Data Distribution

Fig. 2. Illustration of mean logits predictions under IID and non-IID data
distributions. The mean logits represent the model’s average confidence across
classes. In the IID case, the prediction probabilities show relatively consistent
probabilities for each class (around 0). However, under non-IID data, these
probabilities exhibit considerable variability (ranging from approximately -0.2
to 0.2), with notably lower confidence for classes with fewer samples.

between the model’s response to IID and non-IID data in
adversarial federated learning by measuring the logit value
predicted by the model. To simplify our exploration, we are
based on a simple multi-layer CNN network and conduct
preliminary exploration on the MNIST dataset. We model
IID data by sampling the same number of samples for each
class with the same probability. For the non-IID distribution,
the number of samples per class is sequentially chosen from
{5000, 1000, 500, 250, 100, 50, 25, 10, 5, 1}. We compute
the mean logits for each class during the inference stage for
both IID and non-IID data and present the results in Figure 2.
From the illustrated results, it can be observed that in the IID
case, the predictions show relatively consistent probabilities
across classes. However, under non-IID data, the prediction
probabilities vary significantly, with notably lower confidence
in classes with fewer samples. Since the mean logits reflect
the model’s average confidence across classes [20], [21],
this motivates us to develop a method to balance confidence
outputs for non-IID data.

B. Proposed FBAL Framework

The key distinction between adversarial FL and standard FL
is in the local training updates, where AEs are incorporated
into the training process. In contrast, standard FL only con-
siders clean samples during local training. However, simply

Algorithm 1 FBAL
1: for {1, 2, ..., T} do
2: for {0, 1,..., N} in parallel do
3: Communicate model parameters ωt with each client
4: ωt

i ← Local Training(ωt
i )

5: end for
6: ωt+1 ←

∑N
i=1

|Di|∑N
i=1 |Di|

ωt
i

7: end for
Local Training(ωt

i )
8: for local epochs do
9: Adversarial examples generalization using Eq. 4

10: Confidence adjustment for each client using Eq. 7
11: Local adversarial training via Eq. 8
12: ωt

i ← ωt
i − η∇Lbs

i

13: end for
14: return ωt

i

combining standard FL with AT does not yield satisfactory
results [9]. Based on the observations in Figure 2, this paper
proposes a novel FL framework that integrates AT with a
balanced softmax loss. The main training process is illus-
trated in Figure 1. Specifically, the initialized global model
parameters are distributed to each local client in the first step.
In the second step, each client updates the received model
parameters using its own local private data. Specifically, in
this stage, adversarial examples are created by introducing
imperceptible perturbations δ to the clean training datasets of
each client xi. Following this, the model outputs for each
class are balanced based on their prior distributions (step 3),
and adversarial training is performed on each client (step
4). Finally, each participating client sends the updated model
parameters based on its local dataset (step 5) and initiates the
next global iteration. This process repeats until convergence.

C. Distribution-Aware Local Adversarial Training

Neural network architectures generally include input lay-
ers that process input data, transform it into an embedded
representation through intermediate layers, and then map this
representation to logits in the final classification layer. The
predicted logits are then used to compute a loss that measures
the difference between the predictions and true labels. By
minimizing this loss through iterative updates, the model
improves its accuracy. However, as mentioned earlier, directly
optimizing the model with non-IID data can lead to inconsis-
tent prediction confidence across classes, particularly favoring
classes with fewer samples.

Therefore, we propose a distribution-aware strategy to adjust
the output confidence for each local model during the local
AT process. Specifically, we calculate the prior probability for
each class as follows:

pi,j = Sj/S, j ∈ Ci, (5)

where Ci represents the set of classes belonging to any client
i, Sj represents the sample size contained in class j, and
S represents the total training sample size during each local
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TABLE I
CLEAN AND ROBUST ACCURACY (%) ACROSS DIFFERENT DATASETS WITH VARYING LEVELS OF DATA HETEROGENEITY.

Dataset MNIST FMNIST

α = 0.1 Clean BIM FGSM PGD-40 PGD-100 AA Clean FGSM BIM PGD-40 PGD-100 AA

FedAvg 62.76 33.92 22.40 11.80 7.04 4.76 38.14 28.10 30.58 27.86 27.78 25.34
FedProx 63.75 31.23 23.08 8.56 3.57 2.33 39.38 27.84 29.84 28.65 28.45 23.47
Scaffold 60.92 30.24 24.35 12.73 5.93 3.44 40.12 30.56 30.54 28.56 27.13 23.10
FBAL 90.84 68.44 61.68 40.82 21.46 7.94 49.50 41.84 43.56 41.98 41.84 35.22

α = 0.3 Clean BIM FGSM PGD-40 PGD-100 AA Clean FGSM BIM PGD-40 PGD-100 AA

FedAvg 72.56 41.98 33.54 17.08 9.18 6.08 46.30 28.48 32.64 28.46 28.40 27.70
FedProx 71.78 40.22 30.56 15.48 9.23 4.07 45.90 27.91 33.45 27.89 26.01 25.93
Scaffold 72.65 39.89 32.20 17.71 8.73 4.79 43.18 28.19 33.05 27.09 26.94 24.78
FBAL 95.16 73.70 65.96 40.62 19.84 5.24 53.02 46.42 48.94 46.28 46.02 36.04

α = 0.5 Clean BIM FGSM PGD-40 PGD-100 AA Clean FGSM BIM PGD-40 PGD-100 AA

FedAvg 67.30 40.18 34.02 17.80 8.18 3.66 42.34 26.88 30.34 26.76 26.74 20.70
FedProx 66.41 39.89 33.34 19.23 9.24 2.02 43.00 26.81 30.11 26.03 25.88 19.90
Scaffold 65.13 38.26 34.76 18.04 8.81 3.31 42.77 25.53 31.00 25.80 25.19 20.33
FBAL 94.64 75.82 67.40 46.52 27.72 6.78 54.38 45.08 47.28 45.02 44.86 37.60

α = 0.7 Clean BIM FGSM PGD-40 PGD-100 AA Clean FGSM BIM PGD-40 PGD-100 AA

FedAvg 70.16 35.78 30.70 14.84 7.74 4.46 47.88 30.48 34.42 30.36 30.44 29.48
FedProx 72.11 34.09 31.23 13.85 7.29 7.01 46.74 27.09 30.32 30.19 27.05 26.06
Scaffold 68.92 35.05 30.38 15.13 8.07 5.11 45.53 30.11 33.47 29.77 29.86 28.19
FBAL 94.06 74.26 64.96 43.02 23.86 6.90 57.02 45.96 49.26 46.16 46.06 35.12

iteration. Therefore, the calculated pi,j represents the prior
distribution of client i for class j during each local iteration.
Subsequently, we introduce a rescaling and enlargement factor
to dynamically adjust the importance of the prior distribution
among classes, as follows:

p̂i,j = λ · e1−pi,j , j ∈ Ci, (6)

where λ is a hyper-parameter. In this paper, we set λ to
10 based on our experiments with various values, which
demonstrated that this choice yields satisfactory results.

Specifically, we denote the output confidence of the clas-
sification layer in the model as zadvi,j (ωi; x̂i,j), where x̂i,j

represents the adversarial example generated for the j-th class
of each client. Then, we balance the confidence output values
as follows:

ẑadvi,j = zadvi,j (ωi; x̂i,j) · p̂i,j , j ∈ Ci, (7)

where ẑadvi,j represents the balance score for the j-th class of
each client; thus, we can rewrite Eq. 1 as follows:

Lbs
i (ωi) = − 1

|Di|
∑
i∈Di

C∑
j=1

�y=j log
eẑ

adv
j

∑C
j=1 e

ẑadv
j

. (8)

Finally, combining the adversarial training process and the
federated training strategy, the global objective of adversarial
federated training can be redefined as the mean maximization
of the local objective functions of all distributed clients in
MEC, which is defined as follows:

min
ω

Lbs
adv =

∑
i∈[N ]

|Di|∑
i∈[N ] |Di|

Lbs
i . (9)

Additional details of the FBAL process are provided in
Algorithm 1.

IV. EXPERIMENTS

A. Implemental Details

Basic setup. To better evaluate the effectiveness of our
proposal, we compare FBAL with several other baseline meth-
ods, including FedAvg [7], FedProx [14], and Scaffold [22],
all of which adopt the AT strategy. Moreover, we compared
our proposal with other advanced defense methods, such as
ALP [23] and TRADES [24], which we refer to as FedALP
and FedTRADES, respectively. The evaluations are conducted
on MNIST [16] and FMNIST [17]. The same model architec-
ture is used in all experiments and baselines to ensure a fair
comparison across all methods.

Hyperparameters. Following [5], we use the Dirichlet dis-
tribution Dir(α) to introduce non-IID data distribution among
clients for all baselines. In this context, a smaller α value
represents a higher degree of non-IID data distribution across
devices, while a larger α indicates less skewness. In addition,
we set the number of clients to 5 and the local epoch and
global epoch to 1 and 100, respectively. Besides, we use
the SGD optimizer with a learning rate of 0.01 and a batch
iteration of 128. For evaluation, we report both clean accuracy
(i.e., accuracy on unperturbed samples) and robust accuracy
under adversarial perturbations. Several methods are used to
assess model robustness: FGSM [11], PGD [12], BIM [25],
and AA [26] attacks. We set the perturbation bound δ value
for the MNIST task to 0.3 and the step size to 0.01. Similarly,
we set the perturbation bound δ value for the FMNIST task
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Fig. 3. Communication efficiency comparison in clean accuracy (%) for
FBAL, FedALP, and FedTRADES on MNIST (top) and FMNIST (bottom)
with Dir(1.0) across global communication rounds.

to 32/255 and the step size to 8/255. Note that the number
of iterations used to generate adversarial samples is set to 10.

B. Performance Comparison

Performance comparison. For comparison, the methods
used in the experiments include FBAL, FedAvg [7], Fed-
Prox [14], and Scaffold [22], all of which are implemented
using PyTorch. The same training hyperparameters are applied
to all methods. In addition, the performance of each method
is evaluated by computing the average accuracy across the
final five iterations. Both clean and robust accuracy (including
FGSM, BIM, PGD-40, PGD-100, and AA) are reported for all
methods across different levels of heterogeneity. This allows
for a comprehensive comparison of our approach with others.
As shown in Table I, it can be observed that our approach
achieves competitive or superior performance in most cases
when compared to the baselines. From the results in the
table, several key observations can be made. First, varying
levels of non-IID data present challenges to all baselines,
including ours. As the value of α decreases, indicating higher
heterogeneity among clients, the difficulty of maintaining
clean accuracy and robust performance increases. For example,
on the MNIST task, as the value of α decreases from 0.9
to 0.1, our model’s clean accuracy drops from 95.28% to
90.48%, while the robust accuracy (e.g., under PGD-100
attacks) declines from 28.90% to 21.46%. Second, FBAL
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Fig. 4. Communication efficiency comparison in robust accuracy (%) for
FBAL, FedALP, and FedTRADES on FMNIST with Dir(1.0) under FGSM
(top) and PGD-40 (bottom) attacks across global communication rounds.

consistently outperforms all baselines across most metrics
(clean, BIM, FGSM, PGD-40, PGD-100, AA). For example,
under severe heterogeneity (i.e., α = 0.1), FBAL achieves
clean accuracy scores of 90.84% on MNIST and 49.50% on
Fashion-MNIST, significantly surpassing the baseline FedAvg,
which records 62.76% and 38.14%, respectively, demonstrat-
ing a substantial improvement. Third, the AA attack presents
significant challenges to all methods, consistently resulting
in the lowest accuracy compared to other attack algorithms.
Nonetheless, our method still achieves superior performance
under AA attacks in most cases. In summary, FBAL stands
out for its robust performance against adversarial attacks under
non-IID data challenges. It consistently maintains high clean
accuracy and robust accuracy, outperforming many baselines
in these scenarios.

Communication efficiency comparison. To further validate
the effectiveness of our proposed method, we also compare
FBAL with other advanced defense algorithms integrated with
FedAvg, including ALP [23] and TRADES [24], referred to
as FedALP and FedTRADES, respectively. Without loss of
generality, we set α = 0.5 and report the clean accuracy on
MNIST and Fashion-MNIST tasks compared with different
baselines in Figure 3. In addition, Figure 4 shows the robust-
ness of the large-scale Fashion-MNIST dataset to FGSM and
PGD attacks in the same heterogeneous setting. Both sets of
experiments demonstrate that our approach surpasses the other
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baselines in communication efficiency, suggesting relatively
stronger performance in terms of both clean accuracy and
adversarial robustness. From the results shown in the figures,
several key observations can be made. First, regarding clean
accuracy in Figure 3, FBAL demonstrates both a faster con-
vergence rate and higher accuracy in comparison to the other
methods for both the MNIST and Fashion-MNIST tasks. For
instance, by the 40th communication round, FBAL’s accuracy
is already close to convergence, while the other methods have
not yet reached this point. Interestingly, we find that both
FedALP and FedTRADES have lower accuracy, which may be
because these methods do not take into account the challenges
of non-IID data. Second, in Figure 4, we observe that the
accuracy of all methods declines under adversarial attacks
compared to their clean accuracy shown in Figure 4. For
example, in the Fashion-MNIST task with Dir(1.0), FBAL’s
clean accuracy exceeds 65%, but it drops to around 50% under
PGD-40 attacks. Similarly, FedALP’s clean accuracy is around
60%, but it decreases to approximately 45% under FGSM
attacks. Nevertheless, despite the significant challenges posed
by adversarial attacks, our approach consistently outperforms
the others by a substantial margin, as evidenced by the
approximately 10% improvement shown in Figure 4. These
experimental results further confirm the motivation behind and
the effectiveness of our proposal.

V. CONCLUSION AND FUTURE WORK

In this paper, our toy example experiments reveal that
while model output confidence consistently reflects predictions
across classes under IID data, it can become biased towards
classes with fewer samples under non-IID data. Based on these
observations, we propose a novel robust FL framework that
integrates adversarial training with a prior distribution-aware
strategy to improve the model’s robustness against adversarial
attacks and its fairness in addressing non-IID data challenges.
Experimental results across various heterogeneity settings
demonstrate that our proposal achieves performance that is
comparable to or exceeds that of several popular baselines. We
believe our intriguing findings provide researchers with a new
perspective for addressing adversarial attacks in FL models.
In our future work, our proposal can be theoretically proved
from the perspective of probability theory and evaluated across
a wider range of tasks and model architectures.
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