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Abstract—With the advent of high-speed and low-latency
wireless communications such as 5G and Wi-Fi 6, more and
more users are using them for large traffic applications such as
high-resolution video streaming and cross reality (XR) services.
However, the quality of wireless communications can be degraded
by interference and other factors, which can reduce the quality
of such services. Prediction of wireless communication quality
is a useful method to deal with this problem. A method has
been proposed to avoid degradation of quality of service (QoS)
by predicting throughput using time-series data of throughput,
which is one of the indicators of wireless communication quality.
However, existing methods require constant measurement of
throughput, which increases the traffic load and may degrade
the quality of service. In this paper, we propose a method
for predicting wireless communication quality without traffic
load for measuring throughput by using communication logs.
The proposed method uses received signal strength indicator
(RSSI), channel occupancy rate (COR) and modulation and
coding scheme (MCS) as inputs. The learning is performed
using a random forest to predict the throughput that can
be potentially transmitted from a node with new connection.
Through experimental evaluation, we have confirmed that we
can predict the potential throughput with an average error of
about 16% in areas where RSSI is greater than −60 dBm by
using communication logs and COR.

Index Terms—IEEE 802.11ac, Random Forest, Throughput
Estimation, Channel Occupancy Rate, MCS

I. INTRODUCTION

In recent years, the fifth-generation mobile communication
system (5G) and a new wireless LAN (WLAN) standard
named IEEE 802.11ax (Wi-Fi 6) have enabled faster link speed
and lower latency wireless communications than before. As
a result, cross reality (XR) services such as virtual reality
(VR) and high-resolution video streaming and viewing ser-
vices have grown and developed significantly. Today, these
services can be used in various locations by using wireless
communications such as cellular systems and WLAN for the
last hop to the user, which is the communication section from
the base station, router, or access point (AP) to the end-user.
Here, it is necessary to provide high-speed and low-latency
communications for the comfortable use of high-resolution
video distribution and viewing services and XR services.
Specifically, the recommended transmission speeds for video
streaming services such as YouTube are 20 Mbps or higher
for 4K videos and 50 Mbps or higher for 8K VR videos [1].

Also, it is recommended that the latency becomes less than
200 ms for comfortable video calls [2].

However, the increase of wireless users at a particular
location and time may cause bandwidth shortages and radio
interference. Consequently, the quality of wireless communi-
cation degrades, making it impossible to maintain high-speed,
low-latency communication. Then, the quality of services
that require high-speed, low-latency communication will get
worse. Poor quality of service (QoS), for example, affects the
stable provision of live streaming services that require real-
time performance and remote surgery services that require
high reliability. Therefore, service suppliers need to consider
how to avoid QoS degradation. If they can predict the user’s
wireless communication quality in advance, they can take
measures such as changing the used AP or switching the
communication system before QoS degradation occurs. Thus,
predicting wireless communication quality can help avoid QoS
degradation.

One method for predicting wireless communication quality
is to create a prediction model of wireless communication
quality by using machine learning to analyze a time-series
dataset created based on measured data of wireless com-
munication quality evaluation indicators. Here, the important
indicators for evaluating wireless communication quality are
throughput, round trip time (RTT), link speed, and packet loss
rate. An existing method predicts future values of these indi-
cators by learning time-series data of the indicators collected
from each user using a graph convolutional network (GCN)
[3].

Other methods have been proposed using channel occu-
pancy rate (COR) and received signal strength indicator (RSSI)
as evaluation indicators in addition to throughput and pre-
dicting future throughput using long and short term memory
(LSTM) [4].

One common point among these methods is that they
include past throughput as input for machine learning in order
to predict throughput. However, using past throughput makes it
difficult to predict throughput before data transmission begins.
Furthermore, constant measurement of throughput to predict
wireless communication quality may lead to an increase in
traffic load and resulting degradation of communication quality
due to large traffic required for measurement throughput.
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Therefore, for stable provision of services that require high-
speed and low-latency communication, it is necessary to de-
velop a method for predicting wireless communication quality
without extra traffic. In this paper, we propose a method
for predicting wireless communication quality indexes using
communication logs that are easy to obtain without additional
traffic. Specifically, we take RSSI, COR, and modulation and
coding scheme (MCS) as communication logs and learn using
random forest to predict the potential throughput Thp of a new
connected terminal. The potential throughput is defined as the
throughput that can be newly generated by the terminal. In
this paper, we actually created a model that predicts potential
throughput from RSSI, COR and MCS values using a random
forest, and evaluated its prediction accuracy.

The structure of this paper is as follows. Section II describes
the communication logs used for the prediction. Section
III describes our proposed method for predicting potential
throughput using communication logs. Section IV presents
the results of experimental evaluation based on the proposed
method, and Section V concludes the paper.

II. COMMUNICATION LOGS USED FOR PREDICTION

A. Received Signal Strength Indicator

Received signal strength indicator (RSSI) is a value that
expresses the power of the radio signal received in the wireless
communication terminal. The larger the value, the higher the
input voltage, and reception is more stable. The RSSI value is
decreased with increasing distance between the transmitter and
receiver and also decreased due to the presence of obstacles.

In 2.4 GHz band 802.11n, it has been found by measurement
that there is a linear relationship between RSSI and throughput
[5]. Considering that the 5 GHz band 802.11ac is basically
an extension of 802.11n, a linear relationship between RSSI
and throughput is expected for the 5 GHz band 802.11ac as
well when the bandwidths are the same. In fact, measurement
experiments have confirmed a roughly linear relationship [6].

B. Channel Occupancy Rate

IEEE 802.11 uses carrier sense multiple access/collision
avoidance (CSMA/CA) to avoid frame collisions in the chan-
nel. In CSMA/CA, before transmitting data, all WLAN equip-
ment checks whether there are any other devices in communi-
cation, i.e., whether the channel is in use by carrier sense. If
there is a device in communication, in other words, the channel
is in use (busy), transmission is postponed and if there is no
device in communication, in other words, the channel is not
in use (idle), the device waits for a certain period, called DCF
Inter Frame Space (DIFS), and a random back-off period and
then transmits the data after confirming again that the channel
is idle.

The channel occupancy rate (COR) is defined as Eq.(1):

COR :=
tbusy
tactive

, (1)

where tactive is the active time since the move to a particular
channel, i.e., the time elapsed after the move, and tbusy is the

TABLE I: MCS index
MCS Modulation scheme Coding rate

0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16-QAM 1/2
4 16-QAM 3/4
5 64-QAM 2/3
6 64-QAM 3/4
7 64-QAM 5/6
8 256-QAM 3/4
9 256-QAM 5/6

time during which the channel was busy. Regarding Eq.(1),
the longer the other WLAN devices are communicating, the
larger the value of tbusy and the larger the value of COR. It
can also be said that the throughput of own device decreases
when the COR is high because the device cannot communicate
while other WLAN devices are transmitted.

Therefore, COR is an indicator of channel congestion and
a value that has a strong correlation with throughput.

C. Modulation and Coding Scheme

The modulation and coding scheme (MCS) is an indexed
combination of modulation scheme and coding rate. In the 5
GHz band 802.11ac, the MCS is given in 10 steps from 0 to
9. The correspondence is shown in Table I [7].

In the IEEE 802.11 physical layer, these values are closely
related to the theoretical values of the transmission rate. The
theoretical transmission rate DR [Mbps] is given by Eq.(2):

DR =
NSD ×NBPSCS ×R×NSS

TDFT + TGI
, (2)

where NSD is the number of data subcarriers, NBPSCS is the
number of coded bits per subcarrier per stream, R is the coding
rate, NSS is the number of spatial streams, TDFT [ns] is the
OFDM symbol duration, and TGI [ns] is the guard interval
duration.

Note in Eq.(2) that the coding rate and NBPSCS have a
proportional relationship with the data rate. Besides, NBPSCS

depends on the modulation scheme. Therefore, MCS having
two pieces of information, modulation scheme and coding rate,
can be considered useful for predicting throughput.

III. POTENTIAL THROUGHPUT PREDICTION USING
COMMUNICATION LOGS

A. System Model

Fig. 1 shows the system model we consider in this paper.
We assume a situation where a target terminal and another
terminal exist in the same AP coverage area. In this situation,
while another terminal is in downlink (DL) communication
with the AP, the target terminal starts DL communication with
the same AP. The purpose is to predict the target terminal’s
potential throughput Thp, or the throughput that the target
terminal will be able to achieve.

B. Proposed Method

In order to predict the potential throughput, it is first nec-
essary to know the maximum throughput that can be achieved
at the target terminal in the absence of other terminals. In
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Fig. 1: System model.

(a) Assumed channel status (b) Saturated throughput

(c) Virtual throughput (d) Potential throughput

Fig. 2: Channel occupancy and throughput.

addition, determine the throughput that the target terminal
could have achieved in the time that another terminal is com-
municating. In this paper, the former is defined as saturated
throughput Ths and the latter as virtual throughput Thv .

We interpret saturated throughput and virtual throughput
in terms of channel occupancy. The saturated throughput is
the throughput that can be achieved when the target terminal
occupies the entire channel. The virtual throughput is the
throughput that could be achieved if the target terminal was to
occupy the part of the channel occupied by another terminal.
So, by subtracting the virtual throughput from the saturated
throughput, the potential throughput can be obtained. Thus,
the potential throughput Thp can be obtained using Eq.(3):

Thp = Ths − Thv. (3)

This relationship between COR and each throughput is visu-
ally expressed as Fig. 2.

From the above, we consider creating estimation models
for saturated throughput and virtual throughput to obtain each
throughput. Since saturated throughput is strongly correlated
with RSSI as described in Section II, it is reasonable to choose
RSSI as the input to the estimation model. On the other hand,
the inputs to the virtual throughput estimation model are RSSI,
COR and MCS.

Therefore, the procedure for estimating the potential
throughput first obtains the RSSI, COR and MCS as commu-
nication logs. Next, RSSI is input to the saturated throughput
estimation model and RSSI, COR and MCS are input to the
virtual throughput estimation model. Finally, for the output
from each model, the potential throughput is calculated by

subtracting the virtual throughput from the saturated through-
put.

From the obtained communication logs, prepare a dataset to
create the estimation models. The logs record the instantaneous
values of the measured indicators. In actual systems, some
processes such as resource allocation are based on smoothed
instantaneous value [8]. Therefore, the smoothed version of
the communication logs should be used as the training dataset.
Specifically, the collected logs were smoothed using the ex-
ponentially weighted moving average (EWMA) expressed in
Eq.(4):

yt =

t∑
i=0

α(1− α)ixt−i, (4)

where yt is the EWMA data corresponding to time t, xt−i

is the data point at time t − i, α is smoothing factor and is
described using the smoothing window w as in Eq.(5):

α =
2

w + 1
. (5)

EWMA gives the highest weighting to the most recent data,
and the weight decreases exponentially as the data becomes
older. This makes it possible to track channel fluctuations
appropriately based on historical data.

For creating the estimation models, we use random forest
(RF). This is because RF has advantages such as robustness
to high-dimensional input data and low computational cost
and so it is suitable for real-time measurements [9]. Random
forests are a type of supervised learning that combines two
methods; bagging and decision trees. Supervised learning is a
method of learning with correct answers given to the training
data. The dataset used for training requires explanatory and
objective variables. The explanatory variables are the data that
explain the objective variable and the objective variable is the
correct data that wants to be predicted. By using explanatory
variables that are associated with the correct data, it is possible
to create a model that can derive the correct data using only
the explanatory variables.

Bagging randomly reconstructs and extracts data from the
training data and uses that data to create a weak learner. Then,
each of these results is collected and a final decision is made
based on the average value. RF employs a decision tree as the
weak learner. It is a system in which two-choice questions are
connected in a hierarchical structure and the correct answer is
finally obtained by answering the questions one by one.

IV. EXPERIMENTAL EVALUATION AND RESULTS

This section describes measurement experiments carried
out to evaluate the accuracy of the prediction of potential
throughput using the proposed method. We also confirm the
estimation accuracy of the saturation and virtual throughput
estimation models actually created from the data collected
in the experiments and the accuracy of predicting potential
throughput using these models.
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Fig. 3: Experimental setup (obtaining training data for saturated and
virtual throughput estimation model).

A. Measurement Overview

First, we collected training data for the saturated and virtual
throughput estimation model using the experimental setup
shown in Fig. 3. In the experiment, UDP DL traffic was sent
from the transmitting PC to the target PC for 30 seconds at
X Mbps using iperf3. X was set from 10 to 700 Mbps in
10 Mbps increments. The above measurements were repeated
while changing the distance from the AP.

Every second RSSI, COR, MCS and throughput were
obtained from these measurements and used as training data
for the virtual throughput estimation model. As the traffic
increased, there was a point at which the throughput hardly in-
creased any further, and the RSSI and throughput at this point
were used as the training data for the saturated throughput
estimation model.

RSSI, COR and MCS are gotten by typing the Raspberry
Pi OS of ”iw” command on Raspberry Pi. ”iw” is a command
line utility for configuring a wireless LAN network. If the
interface name of the WLAN dongle is ”wlan1”, RSSI and
MCS can be directly taken by typing ”iw dev wlan1 link”.
On the other hand, COR is calculated from ”channel active
time” and ”channel busy time”, which can be obtained by ”iw
wlan1 survey dump”. ”channel active time” is the time that
has elapsed since the terminal connected to the channel, and
”channel busy time” is the length of time that the channel was
busy. Therefore, COR can be calculated by obtaining ”channel
active time” and ”channel busy time” every second, calculating
the increment of each, and using Eq.(1).

The model was created using a random forest with 80% of
the training data and the remaining 20% of the test data.

The root mean squared error (RMSE) expressed

RMSE =

√√√√ 1

n

m∑
i=1

(ŷi − yi)2 (6)

was used to evaluate the estimated model. Note that ŷi refers
to the estimated value and yi refers to the correct value.

Next, we acquired evaluation data for the potential through-
put prediction model using the experimental setup shown in
Fig. 4. The target PC, Raspberry Pi and another PC were
connected wirelessly to the AP, and the traffic transmitting
PCs were wired to the AP. First, a constant UDP DL traffic
was applied from the traffic transmitting PC1 to another PC

Fig. 4: Experimental setup (obtaining evaluation data for potential
throughput prediction model).

TABLE II: Experimental Parameters

AP/Wi-Fi

Name Archer C80
Number of antennas 4

Standard IEEE 802.11ac 5 GHz
Center frequency 5240 MHz

Channel width 80 MHz

Transmitting PCs

Name MINISFORUM TL50
CPU Intel® Core™ i5-1135G7
RAM 16 GB

LAN port 2.5 Gbit
OS Windows 10 Pro

Software iperf3 3.16

Receiving PC
Another PC

Name dynabook S73/H
CPU Intel® Core™ i5-1135G7
RAM 16 GB

USB port USB 3.0
OS Windows 11

Software iperf3 3.16

Raspberry Pi
Name Raspberry Pi4 ModelB

4GB
OS Raspberry Pi OS

WLAN
USB dongle

Name Netgear AXE3000
Number of antennas 2

Interface USB 3.0

LAN cable Maximum
transmission speed 1 Gbit

using iperf3, and the RSSI, COR and MCS were measured by
the Raspberry Pi for 10 seconds. The average value of these
10 seconds was used as input for the potential throughput
prediction model. Next, while keeping the traffic on the
other PC constant, increasing the traffic sent from the traffic
transmitting PC2 to the target PC by increments of 10 Mbps
and measuring the throughput. The throughput was measured
for 30 seconds for each traffic, and the value with the largest
median was used as the correct value of potential throughput.

B. Experimental Specifications

Table II shows the experimental specifications. In these
experiments, the 5 GHz band 802.11ac was used, with fixed
channel 48 and a channel width 80 MHz. The devices con-
nected wirelessly to the AP were equipped with a WLAN USB
dongle and use it to communicate with the AP.
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Fig. 5: Distribution of the error of the potential throughput to the
correct value.

C. Results and Evaluation of Prediction Accuracy

The RMSE for the saturated throughput estimation model
was 18 Mbps. Approximately 91% of the test data was within
an error rate of ±30 Mbps. About 83% of the test data was
within the error rate of 5% or less.

The RMSE of the virtual throughput estimation model was
24 Mbps. Approximately 85% of the test data was within the
error rate of ±30 Mbps. About 86% of the test data was within
an error rate of 15% or less. The importance of each feature
was 0.28 for RSSI, 0.70 for COR and 0.02 for MCS, which
means that COR is the most important and MCS is almost
useless for virtual throughput estimation.

The distribution of prediction errors for potential throughput
against correct values is shown in Fig. 5. This shows that in
most cases there is a fixed error of 30 to 40 Mbps, regardless of
the value of the actual potential throughput. This seems to be
within the proper range based on the RMSE of the saturation
and virtual throughput estimation model.

The distribution of the absolute errors of the potential
throughput for RSSI and COR are shown in Fig. 6. For the
70 evaluation data, the average absolute error of the potential
throughput was about 45 Mbps. In particular, focusing on the
part of RSSI greater than −60 dBm, there were 40 of the 54
evaluated data within an error rate of 20% or less. The average
absolute error of the potential throughput was about 42 Mbps,
and the average error rate was about 16%. On the other hand,
at points where the RSSI was smaller than −60 dBm, the
average absolute error was about 60 Mbps and the average
error rate was about 94%. In such areas with low RSSI, the
throughput values are inherently small, so the effects of the
fixed errors discussed above are pronounced in the error rate.
However, even considering this factor, the prediction accuracy
is significantly reduced in these low-RSSI regions.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for predicting the
potential throughput, i.e., the throughput that can be newly
achieved by the terminal without applying new traffic, by using
communication logs. The proposed method obtains RSSI,
COR, and MCS as communication logs. Then, the saturated
throughput, i.e., the throughput that a terminal can achieve
in the absence of other terminals, is estimated from the

Fig. 6: Distribution of absolute error for RSSI and COR.

RSSI, and the virtual throughput, i.e., the throughput that a
terminal cannot achieve due to channel occupation by other
terminals, is estimated from the RSSI, COR, and MCS. The
potential throughput is calculated by subtracting the virtual
throughput from the saturated throughput. From the results of
the experimental evaluation, it was confirmed that the potential
throughput can be estimated with an error of approximately
45 Mbps on average. It was also found that the potential
throughput can be estimated with an error rate of about 16%
if the RSSI is greater than −60 dBm in the area.

However, this prediction accuracy can cause problems in
some cases when considering the use of this system in actual
situations. Therefore, it is necessary to improve the prediction
accuracy by extending the data set by making measurements
in various environments, changing the machine learning used
to create the estimation model, and increasing the number of
indicators used as communication logs. In addition, in this ex-
periment, we assumed a target terminal and one other terminal,
but since the communication speed changes depending on the
number of terminals in WLAN, it is necessary to confirm the
prediction accuracy when the number of terminals is large.
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