
Q-AIMD: AIMD-based Window Flow Control
with Reinforcement Learning

Yuta Takesada∗, Han Nay Aung∗, Ryo Nakamura†, Hiroyuki Ohsaki∗
∗ School of Engineering Kwansei Gakuin University

Email: {gak49963,hannayaung,ohsaki}@kwansei.ac.jp
† Faculty of Engineering Fukuoka University

Email: r-nakamura@fukuoka-u.ac.jp

Abstract—Research on congestion control algorithms, which
utilize machine learning techniques without prior knowledge
of the network’s internal state, has been actively performed.
In recent years, various researchers have proposed Reinforce-
ment Learning (RL) based congestion control algorithms. In
the RL-based approach, the window size of the data sender
is adjusted according to the reward value obtained from the
environment. While recent RL-based algorithms (such as Owl,
QTCP, and MVFST-RL) adjust the window size, they either
rely solely on incremental changes or the additive increase or
multiplicative decrease. The specific values for these adjustments
are determined through empirical evaluation. We suggest that
modeling the behavior of TCP/IP congestion control algorithms
(such as the AIMD algorithm) as action sets and incorporating
them into the Q-learning framework can lead to more effective
outcomes. Furthermore, these algorithms assume that all net-
work flows are greedy. In real-world networks, flows are not
homogeneous and every flow requires different QoS (Quality
of Service) requirements. The objective of this research is to
propose a Q-learning-based AIMD window flow control (Q-
AIMD), a congestion control algorithm that dynamically adjusts
the window size using Q-learning in an AIMD manner and also
supports heterogeneous flows with different QoS requirements.

Index Terms—Congestion Control (CC), AIMD (Additive In-
crease Multiplicative Decrease), Reward design, Q-Learning,
Reinforcement Learning

I. Introduction

Addressing the challenge of the Internet congestion control

is a complex endeavor influenced by various factors such as re-

source limitations, high traffic demands, complex architecture,

and the dynamic nature of network traffic [1, 2]. Internet con-

gestion occurs when the overall demand for network resources

surpasses the available capacities, resulting in potential issues

such as extended delays in data transmission, data packet

losses, and in severe cases, a complete breakdown of the

network [3, 4].

Numerous congestion control algorithms have been intro-

duced by researchers. Notable ones among them are TCP

Reno [5], TCP Cubic [6], and TCP BBR (Bottleneck Band-

width and Round-trip propagation time) [7], all of which

have gained popularity due to their efficiency. Each conges-

tion control algorithm is proposed based on specific network

scenarios. However, a congestion control algorithm designed

for a specific network may not be directly applicable to other

types of networks. Moreover, as networks become complex,

human knowledge alone may not always accurately capture

the intricate network characteristics [2].

With recent advancements in machine learning, researchers

have proposed congestion control algorithms that utilize ma-

chine learning techniques [8-11]. For example, Sacco et al. [8]

proposed a window-based flow control algorithm called Owl,

which utilizes Deep Q-learning, a variant of Deep Reinforce-

ment Learning (DRL). In Owl, each data-transmitting sender

uses current network conditions, like the window size and

round-trip time, to perform Deep Q-learning, adjusting the

window sizes. Similarly, the authors in [11] presented MVFST-

RL, which employs Reinforcement Learning (RL) to design

congestion control algorithms. In [9], the author proposed a

congestion control algorithm based on the multicast QUIC

protocol using a data-driven reinforcement learning method.

These works demonstrate that employing reinforcement learn-

ing can significantly improve performance in congestion con-

trol algorithms.
In the Q-Learning-based congestion control algorithms,

the congestion window size of a data sender is periodically

updated based on the learned Q-table. These algorithms either

rely solely on additive changes [8] or the additive increase

or multiplicative decrease approach [11]. The specific values

for these increases and decreases are determined through

empirical evaluation or are common in congestion control

algorithms.
We believe that representing the window size behavior of

TCP/IP congestion control algorithms (such as AIMD [12]) as

action sets and utilizing these within the Q-learning framework

can lead to more effective performances. Furthermore, existing

studies assume that all network flows are greedy. However,

in real-world networks, flows are not homogeneous and that

every flow requires different QoS (Quality of Service) require-

ments.
We sought to answer the following research questions.

• How efficiently or inefficiently does the AIMD (Addi-

tive Increase, Multiplicative Decrease) algorithm, used

in TCP/IP networks, when represented as an action set

and utilized in reinforcement learning-based window flow

control?

• To what extent does fairness achived in reinforcement

learning-based AIMD window flow control when multiple

flows that have similar QoS requirements compete for the

bottleneck link?

• How can AIMD actions be adapted to accommodate het-

erogeneous networks, where multiple flows with differing

QoS requirements compete for a bottleneck link?

179979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

In this paper, we propose a Q-learning-based AIMD window

flow control (Q-AIMD), a congestion control algorithm that

dynamically adjusts the window size using Q-learning in an

AIMD manner and also supports heterogeneous flows with

different QoS requirements.

The main contributions of this paper are summarized as

follows.

• We propose an AIMD-based window flow control using

Q-learning.

• Through simulations, we quantitatively reveal how the

performance of Q-AIMD varies under different network

environments, including network topology, the number of

flows, link bandwidth, and propagation delay.

• We demonstrate that Q-AIMD achieves high throughput

and fair bandwidth sharing among competing flows and

that it can handle heterogeneous flows with different QoS

requirements.

The structure of this paper is as follows. In Section II,

we provide an overview of related work in machine-learning-

based congestion control techniques. In Section III, we present

the proposed Q-AIMD congestion control algorithm. In Sec-

tion IV, we present our experimental design for investigating

the effectiveness of our Q-AIMD. In Section V, we present the

results of our simulations. Finally, Section VI summarizes our

findings and discusses potential directions for future research.

II. Background and RelatedWork

This section provides a brief introduction to Reinforcement

Learning (RL) and existing RL-based network congestion

control algorithms.

A. Reinforcement Learning

RL, a sub-domain of machine learning serves as a tool

in dealing with Markov Decision Processes (MDP), model

decision-making problems in discrete-time, where outcomes

are influenced by randomness and the control of a learning

agent (decision-maker) [13, 14]. It has been applied to various

research fields such as game theory, operations research, and

network communications [15-17].

Among RL algorithms, the Q-learning [18] is efficient in

obtaining an optimal policy when the state space (the set

of all possible states a learning agent can encounter in the

environment) and action space (the set of all possible actions

that the agent can take) is relatively small.

In Q-learning, a learning agent initially observes its current

state, takes an action, and receives an immediate reward

and information about its new state from the environment.

The agent then uses the acquired information to adjust its

policy. This iterative process continues until the agent’s policy

converges towards the optimal policy. It has been applied in the

domain of network congestion control algorithm [19], network

routing [20-22] and mobile and wireless networking [23].

B. RL-based congestion control algorithm

Authors of [2] point out that traditional rule-based conges-

tion control algorithms (e.g., TCP Reno, New-Reno, Com-

pound TCP (CTCP), Vegas, TCP Cubic, and TCP BBR) have

several limitations. For example, it cannot adapt to new net-

works and cannot learn from experience or prior information

about link bandwidth, channel characteristics, or the number

of concurrent flows to improve performance.

One of the earliest congestion control algorithm that utilized

machine learning was Remy [24]. Remy’s design process takes

into account critical network parameters, assumptions, and

traffic models to generate an algorithm to optimize throughput,

queueing delay, or a combination of both. Remy employs a

decentralized partially observable Markov decision process,

creating congestion control algorithms aligned with specific

objectives and network assumptions.

Adding to the advancements, the authors of [19] introduce

Aurora, a DRL based scheme. It is reported in [19] that

employs a fully-connected Deep Neural Network (DNN) to

learn state-action pairs from historical data, using parameters

like latency gradient, latency ratio, and sending ratio as state

features. Aurora surpasses BBR and Remy in terms of perfor-

mance.

In another work, the authors of [10] present QTCP, a con-

gestion control algorithm utilizing RL. QTCP autonomously

learns effective strategies by dynamically adjusting the con-

gestion window, achieving high throughput and low latency

in real time. The learning agent interacts with the network

environment, exploring and refining optimal policies through

sequential actions. Experiments demonstrate that QTCP out-

performs traditional rule-based TCP, achieving a substantial

increase in throughput while maintaining low latency.

In [11], the authors introduce MVFST-RL, a framework

for congestion control in the QUIC transport protocol that

utilizes asynchronous RL training with off-policy correction.

MVFST-RL was then evaluated on emulated networks from

the Pantheon platform.

In recent years, the authors in [10] introduced Owl, a trans-

port protocol designed to address the limitations of current

congestion control methods, especially in dynamic network en-

vironments like cellular and wireless networks. By using RL,

specifically Deep Q-Learning, Owl dynamically adjusts the

congestion window to maximize throughput, ensure fairness,

or minimize packet loss and delay. Comprehensive evaluations

demonstrate Owl’s effectiveness across various network sce-

narios, making it a promising solution for improving network

performance.

III. Q-learning based AIMD window flow control

(Q-AIMD)

This section introduces the proposed congestion control

algorithm that operates on the data-transmitting sender.

Q-AIMD is a Q-learning based window flow control algo-

rithm that aims to dynamically adjust the number of sending

packets, referred to as the window size (cwnd), that can be

transmitted within a Round-Trip Time (rtt).

Let’s consider a network environment comprising a

set of learning agents (data-transmitting senders) LA =

{la1, la2, . . . , lan} and an environment (Fig. 1). Given n learning

agents, each learning agent la ∈ LA can first define its utility

function (desired goals), such as high throughput, or specific

minimum thresholds for throughput, denoted as Ula.

180

round trip time

window size

 packet loss probability

update

agent’s state

environmentagent (data sender)

network conditions

rewards

action
cwnd action

1
2

n

Q-table

Fig. 1. Overview of Q-AIMD

The learning agent then interacts with the environment

and continuously explores optimal action by taking sequential

actions (e.g., varying the cwnd) based on feedback (current

network conditions and rewards) from the environment.

Like typical RL-based congestion control algorithm, Q-

AIMD consists of the following elements.

• State S : each learning agent retains a record of observable

network state (i.e. cwnd).

• Actions A: an action set specifies how Q-AIMD should

change its cwnd in response to variations in the network

conditions. We set the action set of Q-AIMD to {cwnd +

0, cwnd + 1, cwnd/2}, reflecting the behavior of window

size in the AIMD algorithm.

• Reward: the reward value is decided by the utility func-

tion. For maximizing throughput, the reward r is calcu-

lated by the following equation [8]:

r = λ − δλ(1 − p)−1, (1)

where, λ and p are throughput and packet loss probability.

δ is a parameter that adjusts the weighting of throughput

and packet loss probability. We calculated λ using the

following equation:

λ =
cwnd

rtt
. (2)

Here, cwnd and rtt are the window size and round-trip

time of a learning agent at the current time, respectively.

rtt is determined by the sum of the round-trip propagation

delay between a data sender and a receiver and queueing

delay at an intermediate router.

After deciding on state, actions, and reward, each learning

agent begins with the random initialization of Q(s, a) for all

states s ∈ S and actions a ∈ A, stored in the Q-table. Each

learning agent updates its Q-table at regular intervals ∆ and

simultaneously adjusts the next cwnd based on the current Q-

table values.

The Q-table comprises of rows representing state S and

columns representing actions A and each value within the

table stores the Q-value, which denotes the expected long-term

reward upon selecting a specific action within a given state.

The Q(s, a) estimates are updated using the Bellman equation.

Q(s, a)← Q(s, a) + α[r + γmax Q(s′, a′) − Q(s, a)] (3)

Here, Q(s, a) represents the estimated Q-value for the state-

action pair (s, a). Our approach can be applied to other QoS

data sender

S1

S2

S3

SN

bottleneck

 router

data receiver

Fig. 2. Dumbbell network topology (multi-flows with single bottleneck)

attributes. r represents the reward obtained when taking action

a in state s. Also, α is the learning rate, and γ is the discount

factor, determining the weight between future and present

states. The state s′ refers to the state reached after taking action

a in state s, and max Q(s′, a′) denotes the maximum Q-value

in the new state, reflecting the estimated future reward.

In selecting an action, Q-AIMD uses an epsilon-greedy

strategy: with a probability of (1 − ǫ), it chooses the optimal

action according to Q-table, and with a probability of ǫ, it

selects a random action.

Various applications and services, often have distinct QoS

specifications and demands. For instance, real-time commu-

nication applications, like video conferencing, may prioritize

low latency and minimal packet loss, while bulk data transfers

might prioritize maximum throughput over low latency. Rec-

ognizing and accommodating these diverse QoS requirements

are essential for optimizing the network performance and

ensuring that each receives the specific quality attributes it

necessitates.

Here, we set utility functions for each learning agent. For

the utility function that aims to maximize throughput Umax(λ),

the reward is calculated using Eq. (1). In the case of the

utility function that focused on achieving a minimum required

throughput, Umin(c), where c represents the desired throughput.

The reward r is calculated as follows.

r = Umin(c) = min(λ, c) − δ λ (1 − p)−1 (4)

IV. Experimental Design

In this section, we conducted simulations to evaluate the

performance of the Q-AIMD window flow congestion control

algorithm. We present our simulation scenario, along with the

action set and parameters for Q-AIMD.

We conducted simulations using the network simulator we

developed. We used two different topologies: a dumbbell

network topology (with N data senders, a router, and a data

receiver) as shown in Fig. 2, and a parkinglot network topology

(with N data senders, three routers, and a data receiver)

depicted in Fig. 3.

In each network topology, data senders are connected to

the router(s) to transmit packets, while the router(s) are linked

to a single data receiver. We vary the bandwidth of all links

uniformly between 10 [packets/ms] and 100 [packets/ms],

while the round-trip propagation delay between a data sender

181

data sender

S21

SN-1

SN

bottleneck

 router

bottleneck

 router data receiver

bottleneck

 router

S11 S20

S1 S10

data sender

data sender

Fig. 3. Parkinglot network topology (multi-flows with multi-bottleneck)

and the router ranged from 1 [ms] to 10 [ms]. The router’s

maximum queue length was set to 20 [packets].

Each data sender utilized the proposed Q-AIMD algorithm

to regulate the number of packets sent. We set the action set

of Q-AIMD to {cwnd + 0, cwnd + 1, cwnd × 1/2}, reflecting

the window size behavior in the AIMD algorithm. The first

action does nothing to the current cwnd, allowing it to remain

unchanged. The second action increases the current cwnd by

1 [packet]. The last action reduces the size of cwnd by half,

which helps to reduce congestion in the network flow. We set

the control parameters of Q-AIMD as follows: the learning

rate α is 0.1, the discount factor γ is also 0.1, the exploration

rate ǫ is set to 0.05, and the scaling factor δ, which influences

the impact of loss probability on throughput, is set to 0.7, and

each learning agent updates its Q-table at intervals defined

by ∆, which is dynamically adjusted based on the sum of

the round-trip propagation delays for both the router and the

receiver.

V. Performance Evaluation of Q-AIMD

This section discusses the performance of Q-AIMD. We

evaluated the effectiveness of our AIMD-based reinforcement

learning congestion control algorithm using evaluation metrics

such as average throughput, Jain’s fairness index, and packet

loss probability. We also aimed to clarify how Q-AIMD can

accommodate differences in QoS requirements for each flow

when the utility functions of the data senders vary.

Additionally, we investigated how the performance of Q-

AIMD changes depending on the action set to show the

effectiveness of AIMD-based action set. We used the action

types used in Owl and MVFST-RL. We define the action sets

as follows: (i) Owl {−10,−3,−1, 0,+1,+3,+10} as outlined

in [8], and (ii) MVFST-RL {×1/2,−10, 0,+10,×2} as specified

in [11]. Throughout this paper, the term Q-owl will refer to Q-

AIMD, with the action set being identical to that of Owl, while

Q-mvfst will refer to Q-AIMD, with the action set identical

to that of MVFST-RL.

A. Throughput and Packet Loss Probability

In this subsection, we present the average throughput and

packet loss probability of a flow.

To evaluate the performance of the proposed algorithm, we

conducted various scenarios in which we varied the number

of flows N, link bandwidth B, and propagation delay between

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10a
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

[p
a

c
k
e

t/
m

s
]

the number of flows

Q-AIMD
Q-owl

Q-mvfst

B = 20 [packet/ms], D = 1 [ms]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

p
a

c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

the number of flows

Q-AIMD
Q-owl

Q-mvfst

B = 20 [packet/ms], D = 1 [ms]

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90 100a
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

[p
a

c
k
e

t/
m

s
]

link bandwidth [packet/ms]

Q-AIMD
Q-owl

Q-mvfst

N = 10 flows, D = 1 [ms]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100

p
a

c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

link bandwidth [packet/ms]

Q-AIMD
Q-owl

Q-mvfst

N = 10 flows, D = 1 [ms]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10a
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

[p
a

c
k
e

t/
m

s
]

propagation delay [ms]

Q-AIMD
Q-owl

Q-mvfst

N = 10 flows, B = 20 [packet/ms]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

p
a

c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

propagation delay [ms]

Q-AIMD
Q-owl

Q-mvfst

N = 10 flows, B = 20 [packet/ms]

Fig. 4. Performance of Q-AIMD in dumbbell network topology

link D, while keeping the router’s maximum queue length is

fixed at 20 [packets]. Each simulation is conducted at least

5 times, setting a different random seed for each trial and

obtained a 95% confidence interval.

Fig. 4 presents the average throughput and packet loss

probability of Q-AIMD, Q-owl, and Q-mvfst in the dumbbell

network topology. Fig. 5 presents the results in the parkinglot

network topology. Network parameters (such as the total

number of flows N, link bandwidth B, and propagation delay

D) are specified in the titles of each subfigure.

These results indicate that Q-AIMD achieves an average

throughput comparable to that of Q-Owl and Q-mvfst, while

also exhibiting a similar packet loss probability, indicating

comparable performance. These results also show that Q-

AIMD adapts its throughput to closely match the bottleneck

link’s available bandwidth.

From the view of packet loss probability, the scaling factor

δ plays a critical role in balancing throughput and packet loss.

We used Eq. (1) to calculate the reward value in each network

topology. When δ is set low, each flow focuses solely on

maximizing throughput, resulting in significant packet losses.

Conversely, a high δ makes each flow more sensitive to packet

losses, leading to reduced throughput. Therefore, finding the

right balance for δ is crucial.

Also, Q-AIMD operates with only three possible selectable

actions in its action set, while Q-owl has seven and Q-

mvfst has five. Despite having fewer selectable actions, Q-

AIMD can achieve higher throughput and lower packet loss

probability. This suggests that the AIMD algorithm’s window

size behavior, commonly used in TCP/IP networks, serves

effectively as the action set in Q-learning.

182

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 20 25 30 35 40a
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

[p
a

c
k
e

t/
m

s
]

the number of flows

Q-AIMD
Q-owl

Q-mvfst

B = 20 [packet/ms], D = 1 [ms]

 0

 0.05

 0.1

 0.15

 0.2

 20 25 30 35 40

p
a

c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

the number of flows

Q-AIMD
Q-owl

Q-mvfst

B = 20 [packet/ms], D = 1 [ms]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20 30 40 50 60 70 80 90 100a
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

[p
a

c
k
e

t/
m

s
]

link bandwidth [packet/ms]

Q-AIMD
Q-owl

Q-mvfst

N = 40 flows, D = 1 [ms]

 0

 0.05

 0.1

 0.15

 0.2

 20 30 40 50 60 70 80 90 100

p
a

c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

link bandwidth [packet/ms]

Q-AIMD
Q-owl

Q-mvfst

N = 40 flows, D = 1 [ms]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10a
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

[p
a

c
k
e

t/
m

s
]

propagation delay [ms]

Q-AIMD
Q-owl

Q-mvfst

N = 40 flows, B = 20 [packet/ms]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

p
a

c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

propagation delay [ms]

Q-AIMD
Q-owl

Q-mvfst

N = 40 flows, B = 20 [packet/ms]

Fig. 5. Performance of Q-AIMD in parkinglot network topology

B. Throughput Fairness

In this subsection, we assess the fairness of Q-AIMD

among multiple flows that utilize the same congestion control

algorithm and utility function while competing for network

resources. To quantify the fairness among the flows, we

utilized Jain’s fairness index, which is calculated using the

following equation:

J =

(

∑N
i=1 λi

)2

N ·
∑N

i=1 λ
2
i

. (5)

Here, N represents the number of flows in a network, and λi

is the amount of resources (throughput) allocated to the i-th

flow. The ideal fairness value is 1.

Fig. 6 shows the fairness of Q-AIMD, Q-owl, and Q-mvfst

as we vary the total number of flows (data senders) or the link

bandwidth in the dumbbell network topology. Fig. 7 presents

the results for the parkinglot network topology.

These results show that Q-AIMD can maintain a higher

fairness index even as the total number of flows and the

router’s link bandwidth increase, indicating a more equitable

distribution of network resources (throughput) among flows. In

contrast, both Q-owl and Q-mvfst show a decrease in fairness

as the number of flows increases.

C. Performance of Q-AIMD in handling diverse QoS require-

ments

In this subsection, we investigate how Q-AIMD can accom-

modate heterogeneous flows with different QoS requirements.

We used the same network topologies described in Sec-

tion IV. Each flow is characterized by a distinct utility function

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1 2 3 4 5 6 7 8 9 10

fa
ir
n

e
s
s
 i
n

d
e

x

the number of flows

Q-AIMD
Q-owl

Q-mvfst

B = 20 [packet/ms], D = 1 [ms]

 0.98

 0.985

 0.99

 0.995

 1

 10 20 30 40 50 60 70 80 90 100

fa
ir
n

e
s
s
 i
n

d
e

x

link bandwidth [packet/ms]

Q-AIMD
Q-owl

Q-mvfst

N = 10 flows, D = 1 [ms]

Fig. 6. Fairness in dumbbell network topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 25 30 35 40

fa
ir
n

e
s
s
 i
n

d
e

x

the number of flows

Q-AIMD
Q-owl

Q-mvfst

B = 20 [packet/ms], D = 1 [ms]

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

fa
ir
n

e
s
s
 i
n

d
e

x

link bandwidth [packet/ms]

Q-AIMD
Q-owl

Q-mvfst

N = 40 flows, D = 1 [ms]

Fig. 7. Fairness in parkinglot network topology

U. In the simulation setup for both network topologies, we

assume that half of the flows desire high throughput, and

thus the utility function is defined as Umax(λ). The other half

focuses on achieving a minimum throughput, and their utility

function is defined as Umin(c).

Figures 8 and 9 show the result for the dumbbell and

parkinglot network topologies. The results indicate that Q-

AIMD performs relatively well in handling heterogeneous

flows with varying QoS requirements.

In both dumbbell and parkinglot network topology, even

changing the total number of flows, both Umax(λ) and Umin(c)

exhibit relatively good performance. For instance, in the

dumbbell network topology with a total of 53 flows, flows

aiming for a minimum throughput of 0.5 [packets/ms] achieve

an actual throughput of 0.4548 [packets/ms], while the other

half seeking high throughput receive approximately 1.6177

[packets/ms]. In a homogeneous network where all flows aim

for high throughput, each flow will receive around

λ =
B

N · rtt
≈

100

53 · 2
≈ 1 [packets/ms]. (6)

VI. Conclusion and FutureWork

In conclusion, we introduced Q-AIMD, a Q-learning-based

AIMD window flow control algorithm. Q-AIMD is designed to

intelligently adjust the congestion window size of a data sender

within a network, while also accommodating heterogeneous

flows with different QoS requirements.

From the perspective of the action set within the Q-learning

framework, conventional reinforcement learning approaches

rely on additive changes, such as those used by Owl and

QTCP, or employ combinations of both additive and multi-

plicative adjustments, like MVFST-RL. In contrast, Q-AIMD

183

50 60 70 80 90 100
0

0.5

1

1.5

2

Umax(λ)

Umin(0.5)

the number of flows

av
er

ag
e

th
ro

u
g

h
p

u
t

[p
ac

k
et
/m

s] B = 100 [packet/ms], D = 1 [ms]

Fig. 8. Dumbbell network topology

50 60 70 80 90 100
0

0.3

1

2

3

Umax(λ)

Umin(0.3)

the number of flows

av
er

ag
e

th
ro

u
g

h
p

u
t

[p
ac

k
et
/m

s] B = 100 [packet/ms], D = 1 [ms]

Fig. 9. Parkinglot network topology

utilizes the window size behavior in the AIMD algorithm,

which is used in TCP/IP networks. Q-AIMD also supports

heterogeneous flows with distinct QoS requirements, by im-

plementing distinct reward functions tailored to these QoS

specifications.

Our simulation results affirm the effectiveness of Q-AIMD

and its adaptability in heterogeneous network environments,

where each flow’s QoS requirements differ. In future work, we

plan to model the behavior of widely used TCP/IP congestion

control algorithms as an action set. By examining various

combinations of these action strategies in different environ-

ments, we aim to determine the optimal configuration values

for action parameters tailored to network characteristics. Ad-

ditionally, we plan to design an optimal reward function that

aligns with the QoS requirements of the network flows.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Num-

ber 24K02936.

References

[1] H. HUANG, X. ZHU, J. BI, W. CAO, and X. ZHANG3, “Machine
Learning for Broad-Sensed Internet Congestion Control and Avoidance:
A Comprehensive Survey,” IEEE Access, vol. 9, pp. 31525–31545, Feb.
2021.

[2] T. Zhang and S. Mao, “Machine Learning for End-to-End Congestion
Control,” IEEE Communications Magazine, vol. 58, pp. 52–57, June.
2020.

[3] L. Zhang, Y. Cui, M. Wang, Z. Yang, and Y. Jiang, “Machine Learning
for Internet Congestion Control: Techniques and Challenges,” IEEE
Internet Computing, vol. 23, pp. 59–64, Dec. 2019.

[4] R. Jain and K. Ramakrishnan, “Congestion Avoidance in Computer
Networks with a Connectionless Network Layer, Part I: Concepts,
Goals and Methodology,” Proceedings of the Computer Networking
Symposium, pp. 134–143, Apr. 1998.

[5] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC 6582, Internet
Engineering Task Force (IETF), Apr. 2012.

[6] G. Vardoyan, C. Hollot, and D. Towsley, “Towards Stability Analysis of
Data Transport Mechanisms: A Fluid Model and an Application,” in in
Proccedings of the 37th Annual Joint Conference of the IEEE Computer
and Communications (INFOCOM 2018), pp. 666–674, Apr. 2018.

[7] N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, and V. Jacobson, “BBR:
congestion-based congestion control,” Communications of the ACM
(CACM), vol. 60, pp. 58–66, Jan. 2017.

[8] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Partially Oblivious
Congestion Control for the Internet via Reinforcement Learning,” IEEE
Transactions on Network and Service Management, vol. 20, pp. 1644–
1659, June. 2023.

[9] Y. Chen, H. Shi, Q. Weng, and Z. Shi, “Congestion Control Design
of Multicast QUIC Based on Reinforcement Learning,” in Proceedings
of the International Conference on Ubiquitous Communication (Ucom
2023), pp. 232–236, July. 2023.

[10] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, “QTCP: Adaptive
Congestion Control with Reinforcement Learning,” IEEE Transactions
on Network Science and Engineering, vol. 6, pp. 445–458, July. 2019.

[11] V. Sivakumar, T. Rocktäschel, A. H. Miller, and H. Küttler, “MVFST-
RL: An asynchronous RL framework for congestion control with delayed
actions,” in arXiv:1910.04054, Oct. 2019.

[12] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
Computer Communication Review, vol. 25, pp. 157–187, Jan. 1995.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Bradford Books, Nov. 2018.

[14] X. Wang, S. Wang, X. Liang, D. Zhao, et al., “Deep Reinforcement
Learning: A Survey,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 35, pp. 5064–5078, Apr. 2024.

[15] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, et al., “Applications of
Deep Reinforcement Learning in Communications and Networking: A
Survey,” IEEE Communications Surveys & Tutorials, vol. 21, pp. 3133–
3174, May. 2019.

[16] W. Jun and Z. Jinzhou, “Q-learning Based Radio Resources Allocation in
Cognitive Satellite Communication,” in Proceedings of the International
Symposium on Networks, Computers and Communications (ISNCC
2022), pp. 1–5, July 2022.

[17] C. Qiu, H. Yao, F. Yu, F. Xu, et al., “Deep Q-Learning Aided Net-
working, Caching, and Computing Resources Allocation in Software-
Defined Satellite-Terrestrial Networks,” IEEE Transactions on Vehicular
Technology, vol. 68, pp. 5871–5883, June 2019.

[18] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning Algo-
rithms: A Comprehensive Classification and Applications,” IEEE Access,
vol. 7, pp. 133653–133667, Sept. 2019.

[19] N. Jay, N. H. Rotman, P. B. Godfrey, M. Schapira, and A. Tamar, “A
Deep Reinforcement Learning Perspective on Internet Congestion Con-
trol,” in Proceedings of the 36th International Conference on Machine
Learning (ICML 2019), pp. 5390–5399, June. 2019.

[20] W. Kim, J. Min, Y. Son, and J. Paek, “A Recent Reinforcement Learning
Trend for Vehicular Ad Hoc Networks Routing,” in Proceedings of
the 14th International Conference on Information and Communication
Technology Convergence (ICTC 2023), pp. 529–532, Oct. 2023.

[21] R. A. Nazib and S. Moh, “Reinforcement Learning-Based Routing
Protocols for Vehicular Ad Hoc Networks: A Comparative Survey,”
IEEE Access, vol. 9, pp. 27552–27587, Feb. 2021.

[22] Z. A. E. Houda, D. Nabousli, and G. Kaddoum, “Cost-efficient Fed-
erated Reinforcement Learning-Based Network Routing for Wireless
Networks,” in Proceedings of the IEEE Future Networks World Forum
(FNWF 2022), pp. 243–248, Oct. 2022.

[23] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A Survey,” IEEE Communications Surveys &
Tutorials, vol. 21, pp. 2224–2287, Mar. 2019.

[24] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
Generated Congestion Control,” Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM (SIGCOMM 2013), vol. 43, pp. 123–
134, Aug. 2013.

184

