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Abstract—Traffic classification is crucial for various aspects
of network management, including network security, Quality
of Service (QoS), and resource allocation. While deep learning
(DL) models have demonstrated effectiveness in traffic clas-
sification, each type of DL model captures different feature
sets, potentially missing essential information. For example, a
dense network might excel at identifying general patterns, while
a CNN focuses on spatial features, and an LSTM captures
temporal dependencies. However, relying on a single DL. model
may result in incomplete feature extraction. To address this
limitation and enhance classification performance, we propose an
ensemble model that combines three DL architectures: a dense
network, a CNN, and an LSTM. This ensemble method leverages
the strengths of each model, enabling comprehensive feature
extraction that incorporates spatial, temporal, and generalized
patterns. By integrating these diverse feature sets, our ensemble
model improves traffic classification accuracy and enhances
overall system performance.

Index Terms—Traffic classification, Deep learning, Mixture of
Expert, Ensemble learning.

I. INTRODUCTION

Traffic classification is a crucial aspect of modern net-
work management, facilitating enhanced network security,
Quality of Service (QoS) optimization, resource allocation,
and anomaly detection. By categorizing network traffic, clas-
sification methods enable the prioritization of critical data
flows, such as latency-sensitive applications like video confer-
encing and VoIP, while identifying potential security threats
and anomalies [1]. In high-demand environments, such as
cloud and edge computing, traffic classification dynamically
allocates resources based on flow requirements, improving
performance and reliability [2]. Additionally, in software-
defined networks (SDN), traffic classification predicts optimal
routes to maintain QoS across diverse flows [3], [4]. Despite
its importance, challenges remain, particularly with the in-
creasing prevalence of encrypted traffic protocols, which limit
traditional inspection-based methods, and the need for scalable
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real-time classification to address evolving traffic patterns and
applications [2], [5].

Deep learning (DL)-based traffic classification methods
have become popular for their ability to extract complex
patterns from data with high accuracy [6]. For instance,
convolutional neural networks (CNNs) are effective at captur-
ing spatial features, while recurrent neural networks (RNNs)
excel at analyzing sequential patterns [7]. However, single DL
models often fail to capture the full range of featuresspatial,
temporal, and generalizednecessary for comprehensive analy-
sis. Ensemble learning addresses this limitation by combining
multiple models to leverage their individual strengths [8].
The Mixture-of-Experts (MoE) approach extends this concept
by dynamically weighting the contributions of specialized
models, or “experts,” through a gating network. This selective
emphasis on relevant experts enhances accuracy and adapt-
ability, making MoE particularly effective for the diverse and
complex requirements of modern network traffic classification
[9].

To address the limitations of feature extraction when using
a single deep learning method, we employ an ensemble ap-
proach. In this paper, we propose a MoE model that combines
three well-known deep learning architectures: dense networks,
CNNs, and long short-term memory networks (LSTMs). The
main contributions of this paper are as follows:

e We propose a Mixture-of-Experts (MoE) model that
combines dense networks, CNNs, and LSTMs to harness
their unique feature extraction capabilities. This approach
enables the model to capture a comprehensive range of
feature types, leveraging the strengths of each architecture
to extract spatial, temporal, and generalized features from
the data.

o We introduce Full Input with Specialized Models strategy,
where each expert processes the complete input data
through its unique architecture, enabling it to interpret the
information in distinct ways. This approach allows each
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Fig. 1. Proposed MoE architecture

model to learn diverse patterns from the data, leveraging
the strengths of its specific architecture to capture a wide
range of feature types.

o« We present a cooperative prediction approach, which
combines outputs from all experts. The gating network
orchestrates this process, balancing the contributions from
each expert to optimize the final prediction.

II. PROPOSED METHOD

We propose a novel Mixture-of-Experts (MoE) model for
network traffic classification that combines multiple deep
learning architectures to capture diverse feature types. Tra-
ditional deep learning models often excel at specific tasks,
such as convolutional neural networks (CNNs) identifying
spatial features or long short-term memory networks (LSTMs)
capturing temporal patterns, but struggle to generalize across
complex data. Dense networks, meanwhile, offer generalized
representations across a broad feature space. The proposed
MOoE model integrates Dense Network, CNN, and LSTM
architectures into a cooperative ensemble, leveraging their spe-
cialized strengths to enhance feature extraction and improve
classification performance.

The Mixture of Experts (MoE) architecture shown in Figure
1 is composed of two main components: expert models, and a
gating network. The input data is fed into the system, allowing
each expert model to interpret the same data independently.
The expert models include a Dense Network, a CNN, and a
LSTM network, each specialized in extracting different feature
types. The gating network then assigns dynamic weights
to each experts output based on the inputs characteristics,
allowing the model to adaptively emphasize certain experts
over others.

The core of our model lies in its Full Input with Specialized
Models strategy, where each expert model comprising a Dense
Network CNN, and LSTM processes the entire input indepen-
dently, extracting unique patterns based on its architecture.
Let the input data be represented as X € R"*™, where n is
the number of samples and m is the number of features per
sample. Each input sample is processed independently by all
expert models:

The Dense Network captures generalized patterns across
the input data, with layers structured to condense high-level
features through a series of fully connected layers. The Dense
Network output be denoted as

o] = fDense(X)a

Jpense(X) = Softmax(Wp - ¢p(X) + bp), (D
where
¢D(X) :RCLU(WDQ-RCLU(W[)l'X—‘rbDl)-l-bDQ), )

and Wp,bp, Wp1, Wpao,bpi,bps are the weights and
biases of the Dense Network.

The CNN extracts spatial features through a series of
convolutional layers that emphasize local, spatial relationships
within the data. This is particularly useful for traffic patterns
where spatial structure or patterns in sequences are significant.
The CNN output is represented as

az = fonn(X),

where the CNN layers focus on identifying spatial dependen-
cies by convolving across the input sequences.

Sfonn(X) = Softmax(We - ¢ (X) + be), 3)
where
¢c(X) = Flatten(MaxPooling(ReLU(ConvlD(X)))), (4)

and W, be are the weights and biases, while
Conv1D, MaxPooling, Flatten represent convolutional layers,
pooling layers, and flattening operations, respectively.

Lastly, the LSTM captures temporal dependencies in the
data, identifying sequential patterns that may indicate partic-
ular trends over time. This temporal representation is denoted
as

az = fistm(X).

fLSTM (X) = SOftIIlaX(WL . gf)L (X) + bL), ®))

where
¢ (X) = ReLU(LSTM(X)), (6)

and W, by are the weights and biases, while LSTM repre-
sents the hidden states computed by the LSTM layer.

Thus, each model (Dense, CNN, and LSTM) contributes a
distinct perspective, extracting general, spatial, and temporal
features, respectively.

To combine the outputs of these specialized experts, a gating
network dynamically assigns weights to each experts output,
producing weight values g1, g2, and g3 that are based on the
relevance of each expert to the input data. Mathematically, the
gating network is formulated as:

g1, g2, g3] = softmax(W, X + b,),

where W, and b, are the weights and bias parameters of the
gating networks final dense layer, and the softmax function
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ensures that g1 + g2 + g3 = 1. This gating mechanism
determines the contribution of each expert, making the model
adaptive to varying input patterns.

The final prediction ypreq is computed as a weighted sum of
the expert outputs, represented by:

Ypred = g1 - 1 + g2 - a2 + g3 - 3.

This cooperative prediction, controlled by the gating network,
ensures that the model dynamically emphasizes the most
relevant features from each expert, achieving a balanced
and adaptable approach to classification across diverse data
patterns.

The proposed model utilizes the categorical cross-entropy
loss (£ ) function to calculate the classification error, ensuring
effective optimization during the training process.

1 n k R
L= n ; ;yw log(9ij), (N
where y;; is the true label for class j and §j;; is the predicted
probability for class j.
To prevent overfitting, a regularization term R is added to
the loss function:

R=2D_ [wl ®)
weEW
where ) is the regularization strength, and W represents all
the trainable weights in the model.
The total loss L for the MoE model is given by:

Etotal =L+ R (9)

III. PERFORMANCE ANALYSIS
A. Dataset and Experimental Setup

For this study, the ISCX VPN-nonVPN dataset was utilized
to evaluate the performance of the proposed MoE model. This
benchmark dataset provides labeled traffic flows categorized
into VPN and non-VPN classes, encompassing diverse appli-
cation types such as browsing, streaming, and file transfer,
with detailed packet-level features like length and inter-arrival
time. All experiments were conducted on a 12th Gen Intel(R)
Core(TM) i5-12600K PC with a 3.69 GHz CPU and 48 GB
of RAM. Data preprocessing was carried out using Python
libraries Pandas and NumPy, while the MoE model was
implemented with TensorFlow/Keras for model building
and scikit-1learn for evaluation.

Table I provides a comprehensive description of the pro-
posed MoE model architecture. It highlights the layers, pa-
rameters, activation functions, and output shapes for each
component, including the Dense Network, CNN, LSTM, and
Gating Network.

B. Results

Figure 2 shows the comparative accuracy of individual deep
learning models, Dense Network, CNN, and LSTM, alongside
our proposed Mixture-of-Experts (MoE) model. The results
indicate that the MoE model outperforms each individual
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model, achieving an accuracy of approximately 99.3%. This
superior performance is due to the ensemble approach of the
MOoE model, which combines the unique strengths of each
expert model. By integrating these models, the MoE model
captures a broader range of feature types such as general,
spatial, and temporalthat a single model alone might miss.
Additionally, the MoE models cooperative prediction strategy,
driven by a gating network, adaptively assigns weights to each
expert, emphasizing the most relevant features for each input.
This dynamic weighting enables the MoE model to achieve
higher classification accuracy overall.

Figure 3 illustrates a comparison of the loss values for indi-
vidual deep learning modelsDense Network, CNN, and LSTM,
along with our proposed Mixture-of-Experts (MoE) model.
The MoE model achieves noticeably lower loss compared to
each individual model, highlighting its improved alignment
with the data and overall performance.

Figure 4 displays the accuracy trends of individual models
and our proposed model over a series of training epochs. It is
evident that while each models accuracy improves with addi-
tional epochs, the MoE model consistently achieves the highest
accuracy at each stage of training. By the end of training,
the MoE model surpasses the individual models, stabilizing
at a near-perfect accuracy level. This superior performance of
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TABLE I
DETAILED ARCHITECTURE OF THE PROPOSED MOE MODEL WITH m=40, NUMBER OF CLASSES =20

Component Layer Type Parameters Activation Function | Output Shape
Dense Layer 1 128 units, kernel size: 40 ReLU (n, 128)
Dropout Layer Dropout rate: 0.3 - (n, 128)

Dense Network Dense Layer 2 64 units ReLU (n, 64)
Dropout Layer Dropout rate: 0.3 - (n, 64)
Dense Layer 3 32 units ReLU (n, 32)
Output Layer 1 %20 Softmax (n, 20)
Conv1D Layer 64 filters, kernel size: 3, stride: 1 | ReLU (n, 38, 64)
MaxPooling1D Layer | Pool size: 2 - (n, 19, 64)

CNN Dropout Layer Dropout rate: 0.3 - (n, 19, 64)
Flatten Layer - - (n, 1216)
Dense Layer 64 units ReLLU (n, 64)
Output Layer 1 %20 Softmax (n, 20)
LSTM Layer 64 units - (n, 64)

LSTM Dropout Layer Dropout rate: 0.3 - (n, 64)
Dense Layer 32 units ReLLU (n, 32)
Output Layer 1 %20 Softmax (n, 20)

. Dense Layer 1 64 units, kernel size: 40 ReLLU (n, 64)
Gating Network Output Lgyer 3 %20 Softmax (n, 3)
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Fig. 4. Accuracy of models vs epochs

the MoE model highlights its ability to leverage the strengths
of each expert model through adaptive weighting, capturing
a more diverse set of features from the data. Consequently,
the MoE model not only converges faster but also achieves
greater accuracy than any single model, demonstrating its
effectiveness in complex classification tasks.

IV. CONCLUSION

We propose a Mixture-of-Experts (MoE) model for network
traffic classification, combining Dense Network, CNN, and
LSTM architectures. Each serves as an expert, with a gating
network dynamically assigning weights based on input char-
acteristics. This setup leverages the unique feature extraction
strengths of each model to enhance classification performance.

To maximize the model’s effectiveness, a full-input-to-
expert strategy was employed, which allowed each expert
to process the entire input data independently, providing a
comprehensive initialization and ensuring that each expert had
access to all relevant features. Furthermore, a cooperative
prediction approach was implemented, enabling the MoE
model to balance the outputs from each expert based on

the gating networks weight assignments, thereby optimizing
classification accuracy. The experimental results demonstrate
that the proposed MoE method effectively classifies multiple
traffic classes, achieving an accuracy of 99.3%. This accuracy
rate is notably higher than that of individual stand-alone
models, confirming the effectiveness of the MoE approach.
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