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Abstract—The 6G communication networks are designed to
provide secure communication, higher data throughput, mini-
mized power consumption, improved system performance, and
enhanced device integration, paving the way for more intelligent
and efficient networking systems. To achieve these goals, an Al
framework is proposed that integrates the integrated sensing
and communication (ISAC) with the federated learning (FL)
scheme, where local devices send their sensing information to
the global base station (GBS) after local training. The GBS
then aggregates this local sensing information and allocates the
desired aggregated average power to the local devices based
on the aggregated sensing information of the local devices. An
optimization problem is formulated to minimize the global model
loss, ensure desired power allocation, and maintain improved
signal-to-interference-plus-noise ratio (SINR) and achievable rate
(AR). An AI framework is proposed, utilizing a federated
averaging (FedAvg) algorithm to address the formulated problem
and allocate the necessary power to local devices based on their
sensing information. Simulation results reveal that our FedAvg-
based AI framework achieves cumulative SINR improvements of
1.02 dB, 1.01 dB, and 1.01 dB, and AR enhancements of 1.71
bps/Hz, 1.70 bps/Hz, and 1.70 bps/Hz, outperforming federated
proximal, centralized training, and average local training meth-
ods, respectively.

Index Terms—Integrated sensing and communication, feder-
ated learning, federated averaging, power allocation, mmWave.

I. INTRODUCTION

The rapid proliferation of mobile devices and diverse
applications has introduced new user demands, driving the
development of 6G communication networks to deliver se-
cured communication, higher data throughput, lower power
consumption, improved system performance, and enhanced
device integration, paving the way for more intelligent and
efficient networking systems [1]-[5]. Integrated sensing and
communication (ISAC) aim to integrate communication and
sensing capabilities on a unified platform, enabling the shared
use of signal-processing resources and wireless infrastructure
for both software and hardware, which enhances network per-
formance by improving power savings, achievable rate (AR),
signal-to-interference-plus-noise ratio (SINR), and hardware
utilization [6]. However, privacy and security concerns are
associated with artificial intelligence (AI) due to the inherently
sensitive nature of the information of the applications. To
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address these challenges, federated learning (FL) offers a
promising solution by enabling distributed training of neural
network models and facilitates collaboration between local
devices and a global base station (GBS) while ensuring the
secrecy of sensitive data [7], [8]. Therefore, integrating feder-
ated learning with ISAC (FedISAC) for the millimeter-wave
(mmWave) networks can improve the system’s performance
with secured communication, power savings, SINR, and AR.
Several studies have analyzed the challenges of leveraging
ISAC in intelligent omni-surface (IOS) or reconfigurable holo-
graphic surface-based cell-free (CF) networks and holographic
MIMO (HMIMO)-based systems. In [9], the authors proposed
a holographic ISAC system utilizing amplitude-controlled
metasurface antennas to address spectrum congestion issues.
The authors in [6] propose integrating HMIMO BSs into
CF networks, replacing traditional BSs with HMIMO BSs
to secure an energy-efficient, HMIMO-empowered CF net-
work for 6G systems leveraging ISAC. The work in [10]
proposes an Al-based framework leveraging ISAC, coexisting
with HMIMO BSs and IOS, to enhance wireless coverage
and reduce power consumption. In [11], an ISAC-based Al
framework is proposed to ensure reduced power usage by
selecting the fewest possible grids from the holographic array
to deliver efficient beamforming for serving users. However,
no studies have considered integrating the ISAC scheme with
the FL framework, where local sensing information is sent
from the local devices to the GBS, which then allocates the
aggregated average power back to the local devices. The core
contributions are outlined as follows:
We propose an Al framework that integrates the ISAC
scheme with the FL framework, where local devices send
the sensing information to the GBS after local training at
the local devices.
The GBS then allocates the aggregated average power
back to the local devices based on the aggregated sensing
information of the local devices.
We formulate an optimization problem that minimizes
the global model loss, ensuring desired power allocation
while maintaining improved SINR and AR.
We design an Al framework that employs a federated
averaging (FedAvg) algorithm to address the formulated
problem and allocate the required power to local devices
based on their sensing information.
Simulation results show that our proposed FedAvg-based
Al framework achieves cumulative improvements of 1.02
dB, 1.01 dB, and 1.01 dB in SINR, and 1.71 bps/Hz, 1.70
bps/Hz, and 1.70 bps/Hz in AR, compared to federated

ICOIN 2025



proximal (FedProx), centralized training, and average
local training methods, respectively.

II. SYSTEM MODEL

We propose a system model to enable a federated learning
framework with integrated sensing and communication that
ensures a decentralized approach for collaborative learning
in wireless networks leveraging ISAC capabilities, as demon-
strated in Fig. 1. The proposed FedISAC system model consid-
ers a GBS and a set of local devices U = {1,...,u,..., U},
which together facilitate collaborative model training without
the need for direct data sharing among the local devices.
Each local device is equipped with a local dataset, which
is used to train a local machine-learning model and the
dataset contains features related to the ISAC. The local devices
preprocess the required data by normalizing the features and
applying log scaling, ensuring that the models are trained on
standardized data. The local model integrated into each local
device is a neural network with three fully connected layers,
the first two layers serve as feature extractors and use ReLU
activation functions to introduce non-linearity, while the final
layer outputs the required power allocation. The local model
is trained using the dataset of the local devices to minimize
the error between the allocated and original power values.

The GBS functions as the orchestrator of the FedISAC
process. Each local device transmits its sensing information
(i.e., distances, azimuth angles, and zenith angles) and locally
trained model parameters (i.e., biases and weights) to the GBS
after a desired number of local training iterations, which is
regarded as the sensing process of the ISAC scheme. The GBS
aggregates the sensing information considering the locally
trained model parameters by averaging them, to update a
global model that captures the collective knowledge of all local
devices. The GBS allocates the necessary power to each local
device based on the aggregated sensing information and the
global model, which serves as the basis for the next phase of
local training. This process is considered the communication
process of the ISAC scheme. The primary task of the local
devices is to perform local computations for model training
and send the sensing information to GBS. On the contrary,
the GBS allocates the required aggregated power to the local
devices by analyzing the aggregated sensing information of
the local devices. Consequently, the FedISAC system ensures
better performance in power allocation, improves the accuracy
of trained models by leveraging sensing information, and en-
hances communication performance. The proposed FedISAC
system involves the following six steps:

1) Step 1: The initialized global sensing information is sent
to local devices.

2) Step 2: Training is carried out leveraging local datasets
on local devices that are associated with the local model.

3) Step 3: The local sensing information is sent to GBS
after a necessary number of local training iterations.

4) Step 4: The GBS aggregates the sensing information for
power allocation to local devices.

Local Training
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Fig. 1. A System model for FL framework with ISAC scheme.

5) Step 5: The GBS allocates the average aggregated power
to local devices based on the aggregated sensing infor-
mation of the local devices.

6) Step 6: The local devices are updated with global
sensing information, which acts as the foundation for
the subsequent round of local training.

A. Sensing Model

The FedISAC system is a distributed approach to machine
learning, where multiple local datasets are trained indepen-
dently, and model updates are shared with a GBS, which is
useful to ensure data privacy and security in wireless commu-
nication networks for effective power allocation based on the
sensing information of the local devices. The GBS aggregates
the updates to form a global model, which is then redistributed
to the local devices for further training. The use of neural
networks for power allocation of the local devices, combined
with a federated learning approach, ensures more efficient
power management, reducing overall energy consumption and
enhancing the performance of the communication network.
Each local device u has its local dataset D,, and trains a local
model w,, using its data. The sensing information s, of each
local device u is used to adjust the local model for £ epochs
of training before updating is represented as [7]

w D = wl!) — VL, (w, Dy,su), (1)
where wgf ) is the local model weights at local device u in
round ¢, s, is the sensing information that influences the
model update, 7 is the learning rate, and Vﬁu(wgf), Du,ySu)
represents the gradient of the loss function £ computed using
the local dataset D, for obtaining the sensing information.
The sensing information of the local devices such as distances,
zenith angles and azimuth angles of the local devices are sent



to the GBS. It is assumed that Z,, and A, represents the zenith
and azimuth angles, respectively, where (Z,, A,,) € [0, 27).

B. Communication Model
The GBS combines the local models to produce an updated
global model w(*+1), which is achieved with the weighted
average based on the size of the local datasets and sensing
information of the local devices. The local devices with larger
datasets have a more significant impact on the updated global
model. The updated global model w1 is redistributed to
all local devices for the next round of training, and the iter-
ative process continues for multiple rounds until convergence
is achieved. This iterative training and aggregation process
allows the global model to progressively improve its perfor-
mance on the power allocation task, benefiting from the diverse
data distribution of all local devices without centralizing any
data. The overall loss function for the global model after
aggregation is represented as [12]
U
L(w) =

u=1

Mg (w, D), )
n

where U is the total number of local devices, n,, is the number
of data samples in the local dataset D,, and n is the total
number of samples across all devices, n = 25:1 ny. Let us
consider that H ,, represents the channel between the GBS and
local device u and the GBS has M antenna grids. Therefore,
the response vectors of the grid array G (Z,, A,) € CM for
the channel of H,, € CM is demonstrated as [13]

G, = [1’ ej‘n'sin(Zu)cos(Au) o ej(M—l)wsin(Zu)cos(Au)]T'

3)

The GBS allocates the desired power P, to local device u,
which is a function of the sensing information s, and the
global model w(*), as demonstrated by:

P, = f(su,w?), 4)

where f is a function that combines the sensing information
s,, and the global model w® to allocate the power P, to the
local device wu.

The power allocation of the local devices follows the rela-
tionship {P1,...,Py,..., Py} € P where P is the power
allocation matrix of the GBS and the overall transmitted power
o at the GBS is represented as o = { PP }. Consequently,
the ISAC signal y,, received at local device u is represented
as [14]

Yu = Huwu + Z Hu/mu’ + Qw
u'#u
where x,, is the ISAC transmitted signal from GBS to local
device u, >_,/, Huw @, is the interference from other local
devices, and €2, is the Gaussian noise (CN(0,?)) at local
device u. Therefore, the SINR for local device w is expressed
as [13]

®)

P,H,x,
Z P,H,x, + 'LZJ27
u' #u
where )2 represents the noise power, and P, and H,
represent the power and channel for the interfering local device

Yu = (6)
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. Subsequently, the achievable rate (AR) ¢, for local device
u is demonstrated as [13]

PUHU:BU
Z PyH, x, +?
u' #u
III. PROBLEM FORMULATION

The federated learning model involves multiple local de-
vices U, each with local data D,. The local devices send
sensing information to the GBS, which allocates the desired
power P to all local devices based on this information. The
core objective is to reduce the global model loss £,,(w) across
all local devices, ensuring more accurate power allocation
while maintaining improved SINR and AR. Consequently, we
aim to minimize the global loss £, (w), which is the weighted
sum of local losses from each local device. The weights are
proportional to the number of data samples of each local
device u. Therefore, the optimization problem is formulated
as follows:

1+

Gu = log, @)

U

Ny

Pl: mi Mg (w, D), 8
P, 2 Lulw D) ®
st [Jw) —w®| <6, Vue U, (8a)
Bu< tVuel, (8b)
Yo < Em,Vu € U, (8¢)
Cu < Om,Vu €U, (8d)

U
> P, < PuVuel, (8e)

u=1
(Z4, Ay) € [0,27),Yu € U. (8)

We consider three decision variables such as P, w,, and w
in problem (P1) where the local device u sends the sensing
information with local model weights w,, to the GBS, which
combines the local models to update the global model w and
the GBS allocates the required power P, to local device u
from the power allocation matrix P according to the sensing
information of the local devices. Constraint (8a) limits the
magnitude of the model updates sent by local devices to
avoid drastic changes between rounds, where d, represents
the maximum allowable difference between the local model
update at local device w and the previous global model.
Constraint (8b) ensures that the data distribution across local
devices is balanced and within a certain range to avoid bias
during training, where (3, represents the minimum proportion
of data that any local device must satisfy to prevent under-
representation. Constraints (8c) and (8d) impose the minimum
SINR and AR requirements, &, and g, respectively, for local
devices to access the intended services. Constraint (8e) ensures
that the total allocated power of all local devices is less than
the system’s maximum power, Pjs. Constraint (8f) imposes
a constraint on the zenith angle Z, and azimuth angle A,,
ensuring its range from O to 27 for power allocation P.

The formulated global model loss minimization problem
(P1) is an NP-hard problem due to its non-convexity, data
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Fig. 2. Overview of Al solution strategies for the FedISAC system, integrating
FL with the ISAC scheme.

heterogeneity, power constraints, high-dimensional models,
and unpredictable local device participation. Consequently,
we employ the FedAvg algorithm to solve the formulated
problem (P1) for allocating the necessary power to local
devices based on the sensing information, which ensures
privacy preservation, efficient power allocation, scalability, and
robustness for real-world networking applications. Next, we
discuss the details of the FedAvg algorithm.

IV. FEDERATED AVERAGING ALGORITHM FOR ISAC

The FedAvg algorithm is utilized to solve the formulated
NP-hard problem (P1), benefiting ISAC systems due to its
ability to manage decentralized data, preserve privacy, and
ensure efficient communication between local devices and the
GBS. FedAvg allows multiple local devices to collaboratively
train a machine learning model without sharing their local
data, thus safeguarding privacy and minimizing communi-
cation overhead. The overall Al solution strategies of the
FedISAC system are demonstrated in Fig. 2, where the GBS
allocates the desired power to local devices based on the
sensing information received from them. For power allocation,
sensing information and local model updates are sent to the
GBS. The local devices first conduct the training process and
send their updates to the GBS, which then uses the FedAvg
algorithm to allocate the aggregated average power to the
local devices based on model aggregation and the aggregated
sensing information.

A. Training Process at Local Device

The local device training process plays an important role
in ensuring the effective performance of the FedISAC system,
as it involves the optimization of local models based on the
individual datasets available at each local device. The training
process at the local device is managed using a neural network
model that sends the sensing information such as the distances
of the local devices, and azimuth and zenith angles to the
GBS. Each local device possesses a local dataset that is first
normalized to ensure that the features are standardized, which
helps in stabilizing the training process. The local model is
a neural network with three fully connected layers, where
the first two layers extract relevant features from the input

TABLE I
SIMULATION PARAMETERS

Parameters Values
Wavelength (\) 0.0107 m
Sub-band bandwidth 0.05 GHz
Optimizer Adam
Loss function MSE
Activation function Relu
Noise density -174 dBm/Hz

112 120

87.87%

Testing Accuracy

Training Loss.
a)

Fig. 3. Performance metrics of the proposed FedISAC system using proposed
FedAvg and baseline methods: (a) Training loss; (b) Testing accuracy.

data, while the final layer outputs the required power for
allocating to the local devices. The network architecture can
be represented as

f(a:) = W3 . RCLU(WQ . ReLU(W1 - T+ bl) + b2) + b37 (9)

where Wy, W5, and W3 and by, bo, and b3 are the weights
and biases of different layers, respectively, and x is the input
feature vector. During the training at the local devices, the
mean squared error (MSE) is utilized as the loss function that
is represented as

U

1
U Z (2 — f(fi))z )

i=1

Loy = (10)

where z; is the true value and f(x;) is the predicted value. The
model parameters are updated employing gradient descent,
where the gradients of the loss function concerning the model
parameters are calculated and updated in a way that minimizes
the loss. After training on its local dataset, the local device
updates its model parameters and sends them to the GBS. The
local training ensures that each local device contributes to the
global model based on the patterns and characteristics specific
to its local data, leading to a more robust and generalized
global model. The process continues until convergence is
achieved, typically indicated by a reduction in global loss or
an improvement in performance metrics.

B. FedAvg at Global Base Station

The FedAvg algorithm serves multiple local devices to
collaboratively train a global model under the coordination
of the GBS, without directly exchanging their local datasets.
The GBS initializes a global model wg and broadcasts it to all
participating local devices. Each local device u receives the
global model w! at iteration ¢ and uses its local dataset Dy, to
train the model minimizing the MSE loss function L, as
expressed in (10). The local model is updated using gradient
descent to minimize the MSE loss L, according to (1).
After a defined number of local iterations, each local device
sends its updated model parameters wq(fﬂ) to the GBS. The
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Algorithm 1 FedAvg Algorithm for ISAC

GBS executes:
Initialize global model parameters w'® and power P, ;
Set number of communication rounds E, number of local epochs Ejoca, and adam
optimizer parameters;
for eachround t = 1,2,..., E do
for each local device v = 1,2, ..., U in parallel do
Send global model w™® to local device u
w{t*t1) « Update Local Model (u, w™®)
end for
Aggregate local model updates using (11):
WD B TY | Bl
end for
: Update Local Model (u, w(®) {Run on local device u}
Initialize local model w + w(?);
. Split local dataset Dy, into mini-batches of size B;
for local epoch e = 1,2, ..., Ejoca do
for each mini-batch b € B do
Compute loss on mini-batch: £(w; b);
Compute gradients: V.L(w; b);
Update local model using adam:
w <— adam(w, VL(w; b));
end for
end for
. Return updated weights wferl) to the GBS
: Allocate Power: Power P, to serve local device u, Vu € U.

GBS then aggregates these models to form the updated global
model as [12]

1

U

v n
$ Bt
n

u=1

wt+D) —

Y

The model aggregation ensures that the global model incorpo-
rates the knowledge gained by each local device during local
training. The updated aggregated global model w(*+1) is then
broadcast back to all local devices, and the process repeats
until the model converges. Therefore, the FedAvg algorithm
effectively balances the contributions of all local devices,
leading to a global model that generalizes well across different
data distributions while maintaining the privacy of each local
device’s data. Algorithm 1 demonstrates the overall steps of
the FedAvg algorithm leveraging the ISAC process to serve
the local devices with the desired power.

3
Number of Local Devices

of power allocation for 5 log)l devices using FedAvg and baseline methods.
V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
FedISAC system, which ensures a decentralized approach to
cooperative learning in wireless networks by leveraging ISAC
capabilities and allocating the desired power to local devices
based on their sensing information. To evaluate the perfor-
mance of the FedISAC system, we use the FedAvg algorithm
to allocate the required power to five local devices based
on their sensing information, employing mmWave technology
with an operating frequency of 28 GHz and a maximum power
of 10 W and additional simulation parameters are listed in
Table .We prepare our dataset from the DeepMIMO dataset
to evaluate the performance of the proposed FedISAC system
[15], [16]. We consider the FedProx algorithm, centralized
training, and average local training algorithms as baselines for
comparison with the proposed FedAvg scheme to demonstrate
the effectiveness of the recommended FedISAC framework,
taking the ground truth (GT) values into account. Figs. 3(a)
and 3(b) show the training loss and testing accuracy for
allocating the power to local devices with the proposed Fe-
dAvg scheme and other baselines, where the proposed FedAvg
scheme outperforms FedProx, centralized training, and average
local training, achieving the lowest training loss of 0.37 and
the highest accuracy of 93.13% , with a significant margin
over the baseline methods. Fig. 4(a) illustrates the power
allocation sequences for different local devices, showing that
the FedAvg allocation is very close to the GT and outperforms
the other baselines by a considerable margin. Conversely, Fig.
4(b) shows the total power allocation for five local devices,
where the proposed FedAvg allocates power nearly equal to
the GT power for all devices, outperforming the baselines by a
notable margin and ensures power savings. However, FedProx
and centralized training achieve comparable power allocation
to the GT, while average local training results in a larger gap
from the GT power and provides the worst performance.

Figs. 5 and 6 represent the achieved SINR and AR for the
5 local devices using FedAvg, FedProx, centralized training,
and average local training alongside the obtained SINR and
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Fig. 6. Comparison of AR for 5 local devices using FedAvg and baselines.
AR with GT, respectively. As shown in Figs. 5 and 6, all
the schemes exhibit an increasing trend with the number of
local devices, ensuring higher SINR and AR values for FedAvg
compared to FedProx, centralized training, and average local
training. The FedAvg-based scheme achieves a cumulative im-
provement of 1.02 dB, 1.01 dB, and 1.01 dB in SINR, and 1.71
bps/Hz, 1.70 bps/Hz, and 1.70 bps/Hz in AR, over FedProx,
centralized training, and average local training, respectively.
The FedAvg outperforms FedProx, centralized training, and
local training by efficiently balancing local updates and global
aggregation, allowing local devices to adapt to their unique
data while still contributing to a robust global model. It handles
non-1ID data effectively, reduces communication overhead
by permitting multiple local updates before synchronization,
and achieves faster convergence. In contrast, FedProx limits
local model flexibility, centralized training struggles with data
heterogeneity, and local training lacks global generalization.
Therefore, the simulation results demonstrate the effectiveness
of the proposed FedAvg scheme for the FedISAC system in
6G mmWave networks.

VI. CONCLUSION
In this work, we propose an Al framework that integrates
the ISAC scheme with FL, where local devices send their
sensing information to the GBS after completing local training.
The GBS then aggregates the local sensing information and
distributes the aggregated average power to the local devices
according to this aggregated sensing information. We formu-
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late an optimization problem to minimize global model loss,
ensure effective power allocation, and improve both the SINR
and AR. We propose an Al framework that uses the FedAvg
algorithm to tackle the formulated problem and distribute
the necessary power to local devices based on their sensing
information. Simulation results show that the FedAvg-based
Al framework delivers improvements of 1.02 dB, 1.01 dB,
and 1.01 dB in SINR, and 1.71 bps/Hz, 1.70 bps/Hz, and 1.70
bps/Hz in AR, surpassing FedProx, centralized training, and
average local training methods, respectively.
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