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Abstract—Cellular Radio Frequency (RF) spectrum moni-
toring and analysis are crucial for identifying and mitigating
interfering and disruptive RF signals. In this study, we use Deep
Learning (DL) models, including Convolutional Neural Networks
(CNNs) and Transformer Networks (TNs), to classify and identify
these signals. The primary objective is to classify cellular RF
signals to aid in mitigating interference, thereby enhancing
security and quality of service (QoS). Two models, ResNet50 [1]
and ViT [2], are evaluated for their accuracy in classifying
5th generation New Radio (5G NR), 4th generation long-term
evolution (4G LTE), and combined LTE-NR cellular signals.
Both models demonstrate high true positive rates, exceeding
95% across all classes. However, ViT consistently outperforms
ResNet50, showcasing superior capability in capturing distin-
guishing features and more accurately classifying RF signals.
Notably, ViT’s perfect true positive rates for the LTE and NR
classes underscore its robustness and potential in classification
and signal identification tasks, however ViT is much more
resource intensive.

Index Terms—RF Signal Classification, RF Spectrum, Deep
Learning, ResNet50, ViT, NR, LTE, 5G, RF, Cellular

I. INTRODUCTION

Radio Frequency (RF) is a vital electromagnetic resource
that requires constant monitoring to maintain high-quality
service (QoS) in wireless communications. The increasing
demand for spectrum, particularly with the rollout of 5G
and beyond (5G+), significantly heightens the risk of signal
interference, which threatens both network performance and
reliability [3]. Classification of 5G and LTE signals is essential
in modern wireless communication research, enabling network
operators to optimize resources, enhance performance, and
improve security. Accurate signal classification helps detect
anomalies, prevent unauthorized access, and provides insights
into the characteristics of these technologies, supporting the
development of advanced communication systems. Traditional
RF spectrum monitoring methods, however, are often cumber-
some and inadequate for the complexity of today’s networks.
To address these limitations, we propose deep learning (DL)
methods for 4G and 5G RF signal classification, aligning
with the U.S. shift towards these technologies [4], [5]. Un-
like conventional approaches, which rely on manual feature
extraction and demand domain expertise, DL methods offer

automated, adaptable solutions suited for today’s dynamic RF
environments [6]–[8]. Deep neural networks (DNNs), espe-
cially Convolutional Neural Networks (CNNs), have shown
higher accuracy and efficiency in RF signal classification than
traditional techniques [9]–[11]. The primary objective of this
paper is to evaluate and determine which of the two DL model
ResNet50 or ViT is more suitable for the classification of
cellular RF signals. Additionally, the study aims to assess
if the outputs from these models can be effectively utilized
to identify and mitigate sources of signal interference in
5G 5GNR, LTE, and NR − LTE networks. The primary
contribution and novelty of this papers are:

1) This work is the first to utilize spectrogram images gen-
erated from 5G NR signals, incorporating all numerol-
ogy features (eg. subcarrier spacing, symbol duration).
This is in contrast to previous research which focused
primarily on classifying cellular RF signals using I/Q
symbols, modulation, and constellation types. Our work
allows for more precise detection and differentiation
of 5G signals under diverse numerology configuration,
and provides a richer and more detailed time-frequency
representation of 5G NR signals, thereby enhancing the
classification accuracy.

2) Trained models validation is done with real world cel-
lular RF signals.

The remaining sections of this paper are organized as
follows. Section II describes related work of applying of DL in
RF signal identification. Section III describes the system model
and scientific method applied in this effort. Section IV shows
our simulation outputs and Section V compares the output of
our DL models. Section VI summarizes this study, and Lastly
Section VII suggests a potential future work.

II. RELATED WORK

DL has become a promising approach in the field of
wireless communications by demonstrating its effectiveness
in tasks like signal identification, channel estimation, channel
coding, and resource allocation [12]. Modulation recognition
has an extensive exploration of neural network architectures,
particularly CNNs and Recurrent Neural Networks (RNNs).
CNNs excel in extracting local features from time-frequency
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representations like spectrograms, leveraging their spatial fea-
ture extraction capabilities. O’Shea et. al [13] conducted a
comprehensive study demonstrating the potential of DL for
modulation classification. This research, along with other
studies [12], [14] utilized In-phase/quadrature (I/Q) radio
signal samples to train CNNs and residual neural networks
(ResNet). Similarly, the method proposed in [15] also trains a
CNN on I/Q samples and enhances the signal representation
with constellation diagrams, allowing the model to identify
higher-order digital modulations.

Further exploration of constellation diagrams for RF signal
classification was conducted in [16], where AlexNet and
GoogLeNet were trained using tailored image processing
techniques. A unified framework for modulation recognition
and interference detection was proposed in [17], employing
CNN-based classifiers trained on amplitude, phase, frequency
transformation, and I/Q samples to condition RF signals.
Similarly, a CNN-based classifier capable of separating simul-
taneous Wireless Local Area Network (WLAN) and Long-
Term Evolution (LTE) transmissions from radar signals was
introduced in [9]. Another study [10], utilized spectrograms
and the You Only Look Once [18] object detector to identify
Internet of Things (IoT) signals. This study uses a spectrum
sensing technique that leverages DL to concurrently detect
5G NR and LTE signals within a wideband spectrogram.
This approach harnesses the pattern recognition and feature
extraction capabilities of deep learning. Instead of processing
received signals using complex envelope data, we apply the
Short-Time Fourier Transform (STFT) to convert them into
spectrogram images. This transformation creates a richer data
representation by capturing the radio properties of the signals
in the time-frequency domain. Inspired by the semantic im-
age segmentation techniques in computer vision, we employ
ResNet50 and the Vision Transformer (ViT) model to identify
and locate spectral contents of 5G NR and LTE signals within
the wideband spectrogram images.

III. SYSTEM ARCHITECTURE & METHODOLOGY

A. The System Model
The system focuses on classifying RF signals based on their

spectrogram representations.
• RF Signal Generation: LTE and 5G NR signals are

transmitted with distinct characteristics.
• Signal Reception: The signals are captured using a re-

ceiver and converted into a digital form.
• Spectrogram Generation: The captured signals are pro-

cessed into spectrograms using the Short-Time Fourier
Transform (STFT).

• Classification: The spectrograms are used as inputs to a
machine learning model (e.g., ResNet50, Vision Trans-
former) for classification.

The signal s(t) is transformed into the time-frequency domain
using the Short Time Fourier Transform (STFT) to generate
a spectrogram. The STFT of the signal s(t) is defined in
Equation 1, where h(t−τ) is the window function that control
the timing of the fourier transform.

S(t, f) =

∫ ∞

−∞
s(t) · h(t− τ) · e−j2πfτdτ (1)

Spectrogram(t, f) = |S(t, f)|2 (2)

Spectrogram, of a frequency f and time t dependent function
S(t, f) is defined in Equation 2 which captures the power
distribution of the signal over time and frequency and is
represented as a matrix X(t, f). This spectrogram represents
the energy content of the signal as a function of time t and
frequency f and serves as the input to the deep learning model
for classification.

Deep Learning Model Input: The spectrogram of a signal
be represented as as a matrix X ∈ RT×F where T represents
the time segments and F represents the frequency bins.
Given a dataset {Xi, yi}Ni=1, Xi is the spectrogram of the
i-th signal & yi ∈ {0, 1, 2} is the corresponding class label
(0:LTE, 1:5G NR, 2:Combined LTE-NR), the goal is to train
a model to predict the class label from the spectrogram. Now
the classification task can be mathematically formulated as
finding a function fθ(X) parameterized by θ that maps the
input spectrogram X to a probability distribution over the
classes:

fθ(X) = ŷ = Softmax(W · gθ(X)) (3)

where fθ(X) represents a function with parameter θ, input X
and ŷ is the predicted class label. In the equation, Softmax is
the Softmax function is applied to normalize the output into
probabilities, W is the weight matrix of the final classification
layer, gθ(X) represents feature extraction process of the deep
learning models and (y) are the true labels y.

L(θ) = − 1

N

N∑
i=1

3∑
k=1

yi(k) log(fθ(Xi)(k)) (4)

In Equation 4 L(θ) is the cross-entropy loss, which the
model tries to minimize during training, yi(k) is the true label
of sample i for class k, log(fθ(Xi)(k)) is the logarithm of
the probability of the ith sample being in class k. Logarithm
is used to penalize incorrect classification more heavily, N is
the total number of samples in the dataset, and k indexes the
three possible classes.

Figure 2 shows the overall methods used in this work.
We use an Universal Software Radio Peripheral (USRP) [19]
software-defined radio (SDR) configured to adapt to different
RF signals. It harvests 5G and LTE signals and processes their
wave forms to have time-frequency spectrogram images. Re-
sulting images are tested and validated using the DL networks
for the classification works to identify what signal exists in
the environment.

B. RF Dataset Generation and Representation

The dataset was created using MATLAB 5G and LTE
toolboxes [20]. Spectrogram images were generated based
on standard 5G NR and LTE signal parameters to create
comprehensive dataset for deep learning model training, while
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(a) LTE spectrogram (b) 5G NR spectrogram (c) Combined LTE and NR

Fig. 1: Time (ms) Vs Frequency (MHz) spectrogram sample images with different SNR

Fig. 2: Overall RF signal identification diagram

synthetic data offers flexibility in testing a wide range of signal
configurations, we acknowledge that it may introduce biases
or simplifications not present in real-world scenarios. Various
artificial noise and channel effects, such as additive white
Gaussian noise (AWGN), phase noise, frequency-selective
fading, path loss, and nonlinear distortion, were introduced to
the synthetic signals to emulate real-world network conditions.
A total of approximately 3,000 spectrogram images were gen-
erated, with 1,000 images per class. Figure 1 presents sample
spectrogram images of the three classes, where the images
represent the time (ms) versus frequency (MHz) characteris-
tics. The design of the deep learning networks necessitates
a labeled RF dataset, and the learning process enables the
networks to recognize and classify radio frequencies based on
the dataset. For this purpose, spectrograms were chosen as they
capture the time-varying spectrum content of RF signals on a
time-frequency plane. To ensure a diverse and rich dataset,
signal images were generated by varying key 5G and 4G
parameters, such as channel bandwidth, sub-carrier spacing,
synchronization signal block (SSB) patterns, SSB periods,
reference channels, duplex modes, and channel models, with
different center frequencies ranging from 700 MHz to below
6 GHz.
Dataset: To process the most recent standard signals and
a variety of low-cost Software Defined Radio systems, the
sampling rate is set at 100MHz, which provides up to 50 MHz
of usable bandwidth. Bandwidth of [10, 15, 20, 25, 30, 40, 50]
MHz, sub-carrier spacing of [15, 30, 60] KHz, synchroniza-

tion signal block (SSB) duration (20 ms), and SSB Case A
and Case B patterns [21] are a few typical 5G NR signal
parameters. We adjusted the following parameters for LTE
signals: bandwidth [5, 10, 15, 20], the frequency-division du-
plexing transmission method [22], and the reference channel
of [R.2, R.6, R.8, R.9]. The training dataset comprises signal
images, where individual pixels are classified into one of three
classes: NR (5G-NR), LTE, and NR-LTE.

The dataset is partitioned into training, and testing sets,
with 80%, and 20% of signal images allocated to each set,
respectively. To optimize efficiency, transfer learning was
applied with ResNet50 chosen as the foundational network
for image segmentation. Model’s transfer learning capabili-
ties, pre-trained models on large datasets, provide a valuable
resource for adapting knowledge from one domain to an-
other, particularly in scenarios with limited annotated data.
ResNet uses a residual connection to address the vanishing
gradient problem, enabling efficient training of very deep
networks. Also, it exhibits parameter efficiency, allowing for
more effective use of model capacity without a significant
increase in parameters. Dataset and code is available on
https://github.com/rajendra1124/RFsignalClassification

C. Deep Neural Network

The research methodology centered on employing a deep
neural network for the semantic segmentation of wireless
signal images. CNN-based ResNet50 model architecture and
Transformer-based ViT models were used.
ResNet50: Residual Network (ResNet50) [1], a powerful
deep CNN widely used in image classification due to its
residual connections, which allow efficient learning in deep
architectures. By enabling information to bypass certain layers,
these connections focus the network’s learning on residual
mappings—differences between layer inputs and outputs. This
design enhances the model’s ability to capture complex pat-
terns, resulting in higher classification accuracy. In this study,
ResNet50’s residual features are applied to distinguish RF
signals.
ViT: Dosovitskiy et al. [2] introduced the Vision Transformer,
a deep learning architecture that applies transformers, rather
than conventional CNNs, for image recognition. ViT’s at-
tention mechanism enables it to capture global dependen-
cies within images, making it highly effective for tasks like
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segmentation and classification. For RF signal classification,
we use a ViT model pre-trained on ImageNet, adjusting the
final fully connected layer to match the specific number of
classes required. This model, optimized through hyperparam-
eter tuning and validated to ensure generalization, leverages
ViT’s scalability and generalization strengths for enhanced
classification performance.

IV. PERFORMANCE EVALUATION

The ResNet50 model is set up with settings that do not
include top layers, making it easier to customize for the par-
ticular classification assignment. The model architecture has
an input shape (180, 180, 3), the size of the RF signal image,
and the spatial dimensions are reduced by average pooling.
Weights are initialized using pre-trained ImageNet weights for
the three classes (LTE, NR, and NR-LTE). The model’s output
is flattened into a one-dimensional feature vector, facilitating
advanced pattern learning. A dense layer with 512 units and
ReLU activation enhances this capability, followed by a second
dense layer with 3 units and softmax activation to generate
classification probabilities. These additional layers, tailored
for the RF signal dataset, enable precise classification into
predefined categories, ensuring the model’s adaptation for
accurate categorization.

A transformer-based ViT model is used for classifica-
tion using PyTorch and the Timm library. V iT − base −
patch16 − 224A architecture is used to load datasets from
a directory. Reads images from subdirectories, assigns labels
based on subdirectory names, and applies transformations
using torchvision.transforms.Compose. The entropy loss
function and the Adam optimizer with a learning rate of
0.0001 have been used. It iterates through the training dataset,
calculates the loss, back-propagates, and updates the weights.
The training loop runs for 10 epochs, and during each epoch, it
iterates through 32 batches of data, computes loss, and updates
the model parameters.

The accuracy reported for each epoch provides valuable
insights into the training progress and performance of the
ResNet50 image segmentation model over time. As shown in
Figure 3a, the training accuracy increases after the first epochs.
This indicates the model is learning and improving its ability
to correctly classify images over time. Validation accuracy also
increases, indicating that model generalization to unseen data
is well done. Validation accuracy is consistently high and close
to the accuracy on the training dataset, and it is not overfitting
to the training data.

The Figure 3b depicts the training and validation accuracy
of a Vision Transformer (ViT) model over 10 epochs, high-
lighting the model’s learning and generalization performance.
A training accuracy rises sharply in the initial epochs and sta-
bilizes around 0.9 and validation accuracy fluctuating between
0.95 and 0.7. A dip in validation accuracy between epochs 7
and 9 suggests potential overfitting, though the performance
stabilizes in later epochs. The small gap between training
and validation accuracy indicates slight overfitting, though
convergence is achieved after epoch 9. This suggests that the

(a) ResNet50 Model Training and Validation accuracy

(b) ViT Model Training and Validation accuracy

Fig. 3: Training and Validation accuracy of ResNet50 and ViT
network architecture

model has effectively learned from the data, though further
techniques such as regularization or learning rate adjustment
could improve generalization. Despite minor fluctuations, the
model shows strong overall performance with minimal diver-
gence between training and validation.

A. Results and Validation

Comparing the Vision Transformer (ViT) and ResNet50
models’ training and validation accuracy graphs reveals dis-
tinct patterns in their learning and generalization behaviors.
Both models demonstrate rapid improvement in the initial
epochs, followed by stabilization. In the ViT model, there
is a noticeable dip in validation accuracy, suggesting some
overfitting, though it stabilizes at 85% accuracy, closely trail-
ing the training accuracy of 92%. In contrast, the ResNet50
model shows more consistent and smoother performance, with
both training and validation accuracies converging near 95%
without significant fluctuations.

Figures 3 (a) and (b) show both models exhibit fluctua-
tions. However, the ResNet50 accuracy graphs show steady
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(a) ResNet50

(b) Vision Transformer

Fig. 4: Confusion matrix for ResNet50 and ViT network model

improvement over epochs, while the validation loss graphs of
the ViT model demonstrate more erratic behavior. This could
be insufficient training data for the ViT model, a suboptimal
learning rate, or inadequate model capacity. A ViT model
graph provides scope for optimization and improvement; I will
put this task into future work with larger number of dataset.

Figure 4a shows the confusion matrix of the ResNet50
model. The true positive rate for the NR class is 98.3%. This
shows the model correctly predicts the NR class with high
accuracy. The true positive rate for the LTE class is 95.1%
which is slightly less than NR, but the model still demonstrates
good performance in correctly predicting. For the combined
images, the true positive is 94.9%. The model performs well in
correctly predicting the class. The false positive classification
is not greater than 5.1%. The high true positive rates for all
three classes indicate that the model effectively captures the
distinguishing features of each class. Figure 4b shows the
confusion matrix of the ViT model that reveals nearly perfect
positive rates for all three classes. The ViT model demonstrates
exceptional performance in correctly predicting LTE and NR
classes on the given dataset. This shows the model’s ability to

Fig. 5: Computational time comparision

accurately capture the unique characteristics of LTE samples,
leading to flawless predictions.

B. Identification of real world Signals

We utilized the USRP B200mini Software Defined Radio
(SDR) to capture 5G and LTE signals for signal identification
experiments conducted at the Cyber Innovation Lab, George
Mason University, Arlington, VA. An iPhone operating in
5G-only and LTE-only network modes was used to retrieve
serving cell information by dialing the code *3001#12345#*
in field test mode. This provided essential details such as
Absolute Radio Frequency Channel Number (ARFCN) and
bandwidth, enabling the USRP B200mini to be tuned to the
correct frequency and bandwidth for signal measurement.
The captured RF signals were processed into spectrogram
images using MATLAB, which were then classified using
machine learning models trained on synthetic datasets. While
the models were able to identify real RF signals, the classifica-
tion accuracy on real-world datasets was approximately 65%,
notably lower than the performance achieved with synthetic
data. The reduced accuracy on real datasets compared to
synthetic datasets is attributed to several factors. Real-world
RF signals are affected by environmental complexities such
as multipath propagation, interference, and noise, introducing
distortions that challenge the model’s ability to generalize
effectively. In contrast, synthetic datasets are generated under
controlled conditions, resulting in cleaner and more predictable
data.

C. Computation comparision

The figure 5 compares the computational time per epoch for
the Vision Transformer (ViT) and ResNet50 models across 10
epochs. The ViT model consistently requires approximately
700 ms per epoch, showing minimal variation. In contrast, the
ResNet50 model maintains a significantly lower computational
time, remaining under 50 ms per epoch. This indicates that ViT
is around fourteen times more computationally expensive than
ResNet50 for each epoch. The higher cost of ViT is attributed
to its transformer-based architecture, which relies on self-
attention mechanisms. ResNet50, being a convolutional neural
network, is computationally efficient but lacks the ability to
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capture global dependencies. This comparision highlights the
trade-off between computational efficiency and computational
cost in deep learning.

V. DISCUSSION

The ResNet50 and ViT models demonstrate high true pos-
itive rates across all classes, indicating their strong perfor-
mance in classifying NR, LTE, and LTE − NR samples.
The ViT model consistently achieves higher true positive
rates compared to the ResNet50 model within our data set,
suggesting superior performance in capturing the intricate
features and patterns present in the data. Unlike traditional
convolutional neural networks like ResNet50, which operate
on local image patches, ViT treats the entire image as a
sequence of tokens and processes them through self-attention
mechanisms. This enables ViT to capture global context and
long-range dependencies within the images, resulting in en-
hanced performance in capturing the distinguishing features of
the classes. Furthermore, the consistently higher true positive
rates across all classes in the ViT model underscore its effec-
tiveness in accurately classifying samples. The ViT model’s
ability to achieve perfect true positive rates for the LTE and
NR classes indicates its robustness in capturing the unique
characteristics of these classes, leading to flawless predictions.
On the flip side ViT model is much higher resource intensive
than ResNet50 model.

VI. CONCLUSIONS

The Vision Transformer (ViT) model’s near-perfect ac-
curacy within our dataset across all classes highlights its
exceptional ability to recognize intricate patterns and pixel
correlations. This performance underscores its potential as a
highly effective model for classification tasks in various image
segmentation domains.

The ViT model excels at generalizing from known to
unknown data and accurately classifying samples, emphasizing
its pivotal role in advancing computer vision and its applica-
bility to real-world challenges across diverse fields. Although
its training and validation gain shows greater fluctuations
compared to the ResNet model, the ViT achieves superior
classification accuracy. However, this comes at a significantly
higher computational nearly 14 times compared to ResNet50.

VII. FUTURE WORK

Multi RF signals classification: Enriching the training dataset
with a wider range of RF signals (WiFi, Zigbee, Bluetooth,
etc.) will enhance the model’s ability to classify different
signal types accurately and generalize well to various RF
environments
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