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Abstract—The classification of small, low-observable airborne
targets, such as drones and birds, poses significant challenges
due to their low detection rates. Conventional vision sensor-
based approaches often suffer from reduced performance in
low-visibility environments or adverse weather conditions. Ad-
ditionally, the integration of infrared sensors alongside camera
sensors increases hardware complexity and cost, rendering such
solutions inefficient. To address these limitations, we propose
a method that leverages deep learning and inverse synthetic
aperture radar (ISAR) imaging for accurate target classification,
using only radar sensors. Our proposed deep learning-based
ISAR image classifier comprises two key components: simulated
ISAR image generation and deep learning-based classification.
We construct simulated ISAR datasets using point scatter (PS)
modeling for quadcopter drones, hexacopter drones, and aircraft,
and three-dimension (3D) mesh modeling for birds, unmanned
aerial vehicles, and quadcopter drones. The two datasets based
on PS and 3D mesh modeling are used to train a proposed
deep learning classifier. The proposed classifier can achieve a
classification accuracy of 98% on the PS-based dataset and 96 %
on the 3D mesh-based dataset, where scattering was calculated
using the physical optics method.

Index Terms—deep learning, image classification, inverse syn-
thetic aperture radar (ISAR), physical optics method, point
scatter (PS) model, three-dimension (3D) mesh model

I. INTRODUCTION

The rapid advancement of low-observable airborne targets,
such as drones, has heightened the importance of accurate
identification and classification techniques [1], [2]. Exten-
sive research has been conducted to address this challenge,
employing various types of sensors. For example, studies
at [3], [4] focused on drone or stealth target identification
using camera-based systems, while [5], [6] explored detection
using radar sensors. However, vision sensors such as cameras
face inherent limitations in poor visibility conditions, such as
nighttime or adverse weather, hindering accurate identification.
Consequently, radar systems have gained widespread adoption
for identifying low-observable airborne targets.
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In general, ground-based radar systems have been employed
for drone identification through micro-Doppler analysis [7].
Nonetheless, a major limitation of micro-Doppler identifica-
tion is its inability to determine the specific type of the detected
target. This makes it difficult to distinguish between different
types of drones or between drones and birds, especially
in scenarios where precise classification is required. Recent
research efforts have focused on leveraging inverse synthetic
aperture radar (ISAR) systems for target identification and
classification [8]-[10]. The ISAR image shows the two-
dimensional distribution of high energy scattering centers of a
target. Despite the potential of ISAR imaging for precise target
classification, the challenge of acquiring adequate datasets
remains a significant hurdle in remote sensing applications.
Acquiring the ISAR images of airborne targets through real
flight test is not only time-consuming but also cost ineffective.
This problem is compounded when considering birds due to
their unpredictable behavior and lack of controllability, which
complicate data collection efforts. As a result, simulations have
emerged as a practical solution, providing a controlled and
cost-effective means to generate the necessary datasets for the
classification of drones and birds using ISAR imagery. This
approach offers the flexibility to model a wide range of target
behaviors and environmental conditions, enabling the creation
of large, labeled datasets that can be used to train deep learning
models.

Therefore, in this study, we use two different modeling
approaches to obtain ISAR images of various targets. We use
a point scatter (PS)-based model to obtain ISAR images of air-
craft, hexacopter drones, and quadcopter drones. Additionally,
we employ a three-dimension (3D) mesh-based model to gen-
erate ISAR images of birds, quadcopter drones, and unmanned
aerial vehicles (UAVs), using physical optics (PO) method
to calculate the backscattered field for ISAR imaging. Then,
we classify the types of ISAR images using a convolutional
neural network (CNN)-based classifier. The proposed classifier
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incorporates a residual connection structure to address the
vanishing gradient issue, which is frequently observed in deep
neural network training. Finally, we evaluate the efficiency of
our proposed method by verifying the classification accuracy
of the proposed deep learning network.

II. SIMULATION-BASED ISAR IMAGE GENERATION
A. PS-based Modeling

When forming ISAR images through simulation, we used
two modeling methods: PS-based modeling and 3D mesh-
based modeling [11], [12]. In the process of forming an ISAR
image through simulation, PS-based modeling represents the
target as a collection of discrete scattering centers. Each
scattering center contributes to the overall scattered signal,
allowing for an effective capture of the target’s primary
features. This approach uses points to represent the target,
simplifying the complex structure by focusing on key as-
pects that influence the scattered fields. PS-based modeling
is efficient and straightforward, making it suitable for cases
where an approximate representation of the target is sufficient.
However, due to its simplified nature, this approach may lack
the precision needed for capturing more intricate geometric
details or material properties of the target.

For a target modeled as point scatterers, the backscattered
field of the target is calculated based on the distance between
the radar and the scattering points that make up the target.
The signal reflected from each scattering point includes the
time delay and phase changes depending on the time it takes
to return to the radar. The signal intensity varies according to
the target’s position and shape, and there are relative time
delay differences between the scattering points. The radar
calculates the target’s backscattered field by summing the
signals received from each scattering point.

B. 3D Mesh-based Modeling

3D Mesh-based modeling represents the target in detail as a
polygonal mesh, reflecting more complex geometric structures
and surface properties. This modeling method more accurately
represents the actual physical shape of the target and considers
the influence of complex surfaces, including detailed scattering
properties of the object. In this paper, the target material is
assumed to be a perfect electric conductor, and this modeling
technique enables the simulation of the scattering behavior
based on the precise geometric structure of the target.

The target modeled as a 3D mesh uses the PO method to
calculate the induced current on the surface of the target [13]-
[15]. This current is generated on the surface by the radar’s
transmitted wave. Then, the radiated wave from the surface
current is calculated, and the scattered field is obtained by
integrating the radiation over the entire surface of the target.

III. PROPOSED DEEP LEARNING-BASED CLASSIFIER FOR
ISAR IMAGE
A. Dataset Generation

In this paper, two types of simulation-based ISAR datasets
are created to train a deep learning-based classifier. We gener-

ate 1,000 images with PS modeling and 90,000 images using
3D mesh modeling for each type of target. The simulation
parameters used to generate ISAR images for both PS- and
3D mesh-modeled targets are outlined in Table I. We obtain
simulation data for ISAR images of targets across various
environments, considering movement velocities, observation
times, and signal-to-noise ratios (SNR) [16]-[18]. The velocity
of target is set between 10 m/s to 20 m/s, covering typical
velocities of the targets (i.e., quadcopter drones, hexacopter
drones, aircrafts, birds, and UAVs). Also, the SNR is set
between 5 dB to 20 dB with interval of 5 dB. Lastly, the
observation time which corresponds to the coherent processing
interval (CPI) in real-world ISAR systems, is varied from
1 s to 10 s. Along with aforementioned factors, we also
vary the trajectory of targets to generate the ISAR images
from multiple look angles. This allow us to create a diverse
dataset accounting for the trade-off between image resolution
and potential smearing effects due to target motion during
the CPI. In our simulation, we assume an X-band radar
system. Fig. 1 shows examples of PS-modeled targets and their
corresponding ISAR images, and Fig. 2 presents examples
of 3D mesh-modeled targets and their corresponding ISAR
images.

B. Proposed ISAR Image Classifier

We introduce a residual connection-aided deep learning
model designed for efficient classification of various targets
from ISAR images. The model leverages residual connec-
tions to mitigate the vanishing gradient problem, commonly
encountered in the training of deep neural networks. These
connections facilitate the unimpeded flow of gradients, thus
allowing for the training of deeper architectures without in-
creasing the complexity of network. Our network begins with
an input layer for processing ISAR images of size 300 x 300
in RGB format. It includes an initial 3 X 3 convolutional
layer with 8 filters to capture basic image features. The batch
normalization is applied for stability, followed by the rectified
linear unit (ReLU) activation to introduce non-linearity into the
network. ReLU is chosen for its computational efficiency and
its ability to mitigate the vanishing gradient problem, enabling
effective training of deep neural networks. Following the initial
activation layer, a max-pooling layer is employed to reduce
spatial dimensions and computational complexity. Residual
block is followed by initial convolution layer, containing two
convolutional layers with batch normalization and a shortcut

TABLE I
PARAMETERS USED IN ISAR IMAGING RADAR SYSTEM
Parameter Value
Operating band X-band
Pulse repetition frequency (Hz) 10
Frequency samples 256
Range resolution (cm) 15
Observation time (s) 40
Target velocity (m/s) 10 ~ 20
Signal-to-noise ratio (dB) 5~ 20
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Fig. 1. Example of a PS model and its corresponding ISAR images for (a) a quadcopter drone, (b) a hexacopter drone, and (c) an aircraft.

Z (m)
o
Z (m)
o
Z (m)
[

Y (m) ol X (m) Y (m) il X (m) Y(m -1 -2

() (b) (©)

Fig. 2. Example of a 3D mesh model and its corresponding ISAR images for (a) a bird, (b) a quadcopter drone, and (c) UAVs.
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connection for dimension alignment. The output of after
passing through two consecutive residual blocks is flattened
and then passed through a dense layer with 10 ReLU activation
functions as an intermediate step before the final classification.
Finally, the output layer consists of a dense layer with a
softmax activation function, designed to match the number of
classes in the training dataset for multi-class classification. We
trained the network using cross-entropy loss, and the overall
structure of the proposed network is shown in Fig. 3.

C. Performance Analysis

To evaluate the performance of our proposed model, we
compared the results with a lightweight CNN model (i.e.,
reference model) without residual connections. This reference
model is selected to analyze the impact of residual connections
on classification accuracy and training efficiency. Out of the
1,000 images generated using PS modeling for each target,
80% were used for training, and the remaining 20% were used
for validation. For the 90,000 images generated using 3D mesh
modeling, the training and validation datasets were separated
in the same way. We set the batch size, optimizer, learning
rate, and number of epochs identically for the two datasets
based on PS and 3D mesh modeling. These parameters were
uniformly set at 16, adaptive moment estimation, 0.00001,
and 50, respectively, across both the reference and proposed
models.

Fig. 4 shows the training results for the PS-based dataset.
As shown in Fig. 4 (a), the proposed model achieved higher
accuracy for the training and validation datasets compared to
the reference model. Additionally, as shown in Fig. 4 (b),
the reference model exhibits a difference in loss convergence
between the training dataset and the validation dataset. This
indicates that the reference model has poor generalization abil-
ity to new data. In contrast, the proposed model demonstrates
stable loss convergence on both the training and validation
datasets.

Fig. 5 shows the training results for the 3D mesh-based
dataset. As shown in Fig. 5 (a), although both reference and
proposed model show high training accuracies, the proposed
model outperforms in terms of validation accuracy. This in-
dicates that our proposed method can guarantee better gen-
eralization performance when processing new ISAR images.
Moreover, as shown in Fig. 5 (b), the proposed model exhibits
stable loss convergence for both the training and validation
datasets. The reference model has performance limitations
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Fig. 3. Overall structure of the proposed deep learning network.
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Fig. 4. Comparison of the reference model and the proposed model on the
PS dataset: (a) accuracy and (b) loss.

with new datasets. In contrast, the proposed deep learning
network classified targets with 98% accuracy on the PS-based
dataset and achieved 96% accuracy on the 3D mesh-based
dataset, demonstrating strong performance even when applied
to new datasets. This suggests that the model generalizes well
and is capable of maintaining high accuracy across different
types of data. Although the PS-based dataset resulted in higher
classification accuracy because it is more ideal than the 3D
mesh-based dataset, the classification accuracy of the 3D
mesh-based dataset is still high.

D. Evaluation on Real ISAR Data

We evaluated whether the proposed model can effectively
identify targets in real ISAR images. When we input 460 real
ISAR images of a quadcopter drone into the proposed model,
it achieved 100% accuracy across all scenarios, regardless of
whether the model was trained on PS-based or 3D mesh-based
datasets. Although this test was limited to a single type of
image, it provided critical initial validation of the model’s
performance on real-world data. These results suggest that
the proposed model may have a certain level of applicability
to real-world data, and further testing with additional image
types and under varying conditions could help strengthen its
reliability.
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Fig. 5. Comparison of the reference model and the proposed model on the
3D mesh dataset: (a) accuracy and (b) loss.

IV. CONCLUSION

In this paper, we proposed a deep learning network designed
to effectively classify various types of ISAR images. First, we
conducted simulations using two distinct modeling techniques:
PS and 3D mesh. Through this approach, the proposed net-
work was trained and validated on each dataset, achieving a
high classification accuracy of 98% on the PS-based dataset
and 96% on the 3D mesh-based dataset. Furthermore, when
comparing the performance of the proposed network with that
of a lightweight CNN model without residual connections,
the proposed network demonstrated an average classification
accuracy improvement of 17%p on the PS-based dataset and
25%p on the 3D mesh-based dataset.

Additionally, in a further test using real ISAR images
of a quadcopter drone as input data, the proposed model
successfully classified these images as quadcopter drones.
Although this test was limited to a single type of image,
it provides important initial validation of the proposed deep
learning network’s applicability to real-world data. Future
experiments with different image types and conditions could
demonstrate the model’s reliability. This study suggests that
the proposed deep learning network can be effectively utilized
to accurately classify ISAR images of airborne targets under

practical conditions.
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