
Identification of RF Devices Through Constellation
Patterns Using Complex-Valued Neural Networks

Yoshihiro Kitagawa∗, Kakuto Goto∗, Tomotaka Kimura∗, and Jun Cheng∗
∗ Department of Intelligent Information Engineering and Sciences, Doshisha University, Kyoto 610-0321, Japan

(e-mail: ctwj0121@mail4.doshisha.ac.jp; ctwk0112@mail4.doshisha.ac.jp; tomkimur@mail.doshisha.ac.jp; jcheng@ieee.org)

Abstract—Complex-valued neural network (CvNN)-based de-
vice identification is proposed to enhance the security of commu-
nications. Devices have in-phase/quadrature (I/Q) impairments
that arise from variations in the manufacturing process. An
access point (AP) receives I/Q symbols from a device and forms a
constellation pattern, which has a unique feature of the device’s
inherent I/Q impairments. The CvNN is able to recognize the
device by categorizing the pattern. Simulations demonstrate that
the CvNN has a lower error rate in identification than a real-
valued neural network. This is because the CvNN captures the
inherent correlation in complex-valued I/Q symbols caused by
I/Q imbalances.

Index Terms—I/Q imbalances, RF device identification, con-
stellation pattern, complex value neural network

I. INTRODUCTION

In wireless communication systems, various frequency
bands are chosen as carriers based on the system requirements.
RF (radio frequency) circuits within an RF transmitter play
a crucial role by modulating the baseband signal to these
RF frequency bands during transmission. Historically, the
superheterodyne approach was prevalent; in this approach, the
baseband signal is initially transformed to an intermediate
frequency (IF) for processing before being shifted to an
RF signal. This approach was favored because it provided
stability in the functionality of components such as filters and
amplifiers.

In contrast, the direct conversion (DC) approach, which
allows the baseband signal to be directly transformed into
the RF signal bypassing any IF, has gained popularity. This
is due to the elimination of the necessity for IF processing
circuits, which considerably minimizes the circuit dimensions.
The DC approach is particularly well suited for IoT devices
(Internet of Things), which aim to optimize cost, minimize
physical size, and reduce power usage. The surge in the
number of communication-capable devices, driven by the
widespread adoption of 5G and IoT [1], has further heightened
its relevance.

However, the efficient hardware and architecture of IoT
devices implemented in DC applications are susceptible to the
effects of I/Q imbalances, a type of RF impairment caused by
manufacturing variations. In a modulator, I/Q imbalances refer
to mismatches between the in-phase (I) and quadrature (Q)
signal paths, which are supposed to be orthogonal. These im-
balances typically result from amplitude and phase distortion.
I/Q imbalances are inherent to hardware, making it difficult
to completely eliminate, even with advanced manufacturing

technologies, and similarly challenging to manipulate. For this
reason, I/Q imbalances are utilized for device identification to
ensure the security of IoT communications [2]. Note that the
distortion caused by I/Q imbalances is minimal and does not
significantly affect regular wireless communications.

In RF-based device identification methods, experts select
identifiable physical features to confirm the identity of de-
vices [3] [4] [5]. However, neural networks (NNs) can learn
appropriate features for device identification in a data-driven
manner. Most NN-based identification methods use raw RF I/Q
samples as input [6] [7], as various RF imperfections, includ-
ing I/Q imbalances, are observable in RF I/Q waveforms [8].
Since I/Q imbalances are observable in baseband I/Q symbols,
it serves as a motivation to develop an alternative method for
device identification. Our previous work has proposed an NN-
based device identification with constellation pattern, which
is formed by grouping I/Q symbols into their corresponding
constellation points [9].

Although NNs generally handle input signals and weight co-
efficients in the real number domain, transmitted and received
signals in communication systems are often represented in the
complex number domain. In such cases, it is difficult for NNs
in the real number domain to fully capture the inherent features
of these signals in complex number domain. To address this,
there exists a type of NN called a complex-valued neural
network (CvNN), which is extended to operate in the complex
domain [10] [11] [12]. CvNN, with its high generalization ca-
pability demonstrated in computer simulations, is a framework
well-suited for handling the rotation and scaling of signals in
the complex plane. It is gaining more attention in wireless
communications, where it is essential to inherently deal with
complex values.

In this study, we propose a CvNN-based device identifier,
where multiple devices with their device-specific I/Q imbal-
ance transmit signals to an access point (AP) in time-division
multiple access, with the aim of enhancing the security of
regular communications. The AP receives RF signals from
each of the devices and down-converts them into baseband I/Q
symbols. These symbols are grouped into the corresponding
constellation points based on the coded bits estimated by the
regular communication branch. The average of the symbols
at each constellation point forms a constellation pattern that
characterizes the device-specific I/Q imbalances. The CvNN-
based device identifier recognizes this pattern to identify the
device. The simulation results show that the identification

151979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025



�
LO

0 π/2

(1 + ϵ)eıδ

(1− ϵ)e−ıδ

(1 + ϵ)eıδℜ(u)

(1− ϵ)e−ıδℑ(u)

+
u

ℜ(u)

ℑ(U)

s

Fig. 1. A discrete-time model of the equivalent baseband signal for the
modulator using direct up-conversion with I/Q imbalances

performance of the CvNN outperforms that of the real-valued
neural network (RvNN), and approaches a lower bound of
maximum likelihood identification. This is because CvNN cap-
tures the internet correlation in complex-valued I/Q symbols
caused by I/Q imbalances.

II. I/Q IMBALANCES IN DIRECT UP-CONVERSION
TRANSMITTER

This section reviews the model of I/Q imbalances in direct
up-conversion transmitter.

We describe a transmitter signal model with I/Q imbalances
(up-conversion). In this model, ϵ and δ represent the amplitude
and phase imbalance distortions, respectively, and are modeled
as random variables. (1 + ϵ), (1 − ϵ) and δ, −δ denote the
amplitudes and phases of the I and Q branches, respectively.
Let uI(t) and uQ(t) be the I and Q data signals to be
modulated, and let ωc be the frequency of the RF carrier. The
transmitter output is given by

uI(t)(1 + ϵ) cos(ωct+ δ)− uQ(t)(1− ϵ) sin(ωct− δ)

= ℜ
((
(1 + ϵ)eıδuI(t) + ı(1− ϵ)e−ıδuQ(t)

)
eıωct

)

= ℜ
(
s(t)eıωct

)

where

s(t) = (1 + ϵ)eıδuI(t) + ı(1− ϵ)e−ıδuQ(t). (1)

Here s(t) is the equivalent complex baseband signal with I/Q
imbalances, uI(t) + ıuQ(t) ≜ u(t) is the complex data signal
to be modulated, and ı =

√
−1 is the imaginary unit.

The discrete-time representation of (1) is

s=(1 + ϵ)eıδℜ(u) + ı(1− ϵ)e−ıδℑ(u)≜ψ(ϵ, δ, u) (2)

where u denotes the standard, complex modulation symbol. A
modulator using direct up-conversion with I/Q imbalances is
shown in Fig. 1.

For modulation of Q order, complex symbols u0, u1, . . . ,
uQ−1 comprise the set of standard modulation symbols M0 =
{ui}Q−1

i=0 . A standard modulation maps length-Q binary vector
d to complex symbol ui, where d is a binary representation of
decimal i. Moreover, the Q points of ui, i = 0, 1, . . . , Q− 1,
form a standard constellation in the I-Q plane.
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Fig. 2. Device identification system using CvNN

The modulation symbol set of a device affected by its
specific I/Q imbalances becomes [13] [14]:

M={s=ψ(ϵ, θ, u)|u∈M0}. (3)

The Q points of si = ψ(ϵ, θ, ui), i = 0, 1, . . . , Q− 1, form a
constellation patten with I/Q imbalances at the I-Q plane.

The device-specific distortion due to I/Q imbalances arises
from the alteration of amplitude and phase in the I and Q com-
ponents, which are ideally orthogonal. Since I/Q impairments
are hardware-specific and difficult to manipulate, they are
utilized as device identification to secure IoT communications
[2] [9]. Although the I/Q components in ideal modulation are
orthogonal, the distortion leads to a correlation between the
real and imaginary parts of the complex numbers (see 2).
This encourages us to use CvNN for device identification by
employing complex numbers as input.

III. DEVICE IDENTIFICATION USING CVNN

This section discusses how the distinct constellation patterns
caused by I/Q imbalances functions as a device identifier to en-
hance communication security. These patterns are recognized
by employing a CvNN-based system for device identification.

A. System Model

The configuration of the system includes K devices and an
AP. Define the set of devices as K = {1, 2, . . . ,K}, with each
device exhibiting distinct I/Q imbalances.

In Fig. 2, the AP receives coded modulation symbols from
device k ∈ K, estimates the message from device k, and
identifies the device. Specifically, on the transmitting side of
device k, the message bit sequence m is encoded into c with
a channel code such as a polar code. Then, modulation is per-
formed on the coded bit sequence in units of log2 Q bits, and
the sequence of modulation symbols sk = (sk,0, . . . , sk,J−1),
which is affected by the device-specific I/Q imbalances, is
obtained. Here, Mk is the modulation symbol set of device k
affected by its specific I/Q imbalances:

Mk = {s = ψ(ϵk, δk, u)|u ∈ M0} (4)

and sk,j ∈ Mk.
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The modulated transmitted symbols sk are subject to noise
z in the communication channel, resulting in received sym-
bols:

r = sk + z, k ∈ K. (5)

Hear, each component in noise vector z, denoted zj ∼
CN (0, σ2), follows a circularly symmetric complex Gaussian
distribution. Although the received symbols r contain slight
distortions due to the transmitter’s I/Q imbalances, reliable
communication is achieved through channel coding and de-
coding, allowing the original message bits to be restored.

For device identification, we explain the formation of con-
stellation patterns and the device identifier in sections III-B
and III-C, respectively.

B. Formation of Constellation Patterns

For device identification, the estimated message bit se-
quence m̂ is re-encoded into a coded bit sequence ĉ =
(d̂0, . . . , d̂J−1) . According to the value of d̂j , the AP groups
the received symbols rj by matching them to the ideal points
within the constellation. The average at each point is calculated
as:

qi =
1�J−1

j=0 Ii(d̂j)

J−1�
j=0

rjIi(d̂j), i = 0, 1, . . . , Q− 1 (6)

where Ii(d) is the indicator function defined as:

Ii(d) =
�

1, if d is a binary representation of i
0, otherwise. (7)

The estimated constellation pattern Q = {qi}Q−1
i=0 , which

remains as complex numbers, is inputted into a CvNN with
input nodes Q.

C. Device Identifier

The CvNN uses the device-specific constellation pattern as
input to identify the device. Since the constellation pattern is a
complex vector, all inputs and parameters (weights, biases) of
the CvNN are complex-valued. Moreover, activation functions
are also complex functions.

The basic structure of CvNN consists of one input layer, N
hidden layers, and one output layer. Each hidden layer in a
CvNN unit is composed of a weight matrix Wj , a bias vector
bj , and an activation function ϕ. The output layer is composed
of a weight matrix Wo, a bias vector bo, and an activation
function ϕo. The output of the CvNN with N hidden layers
is expressed as follows:

f(q; Θ) = ϕo(WoϕN (WNϕN−1(. . . ϕ1(W1q+ b1)

. . . ) + bN ) + bo), (8)

where q = (q0, q1, . . . , qQ−1) represents the input to the
CvNN unit, and Θ is the set of weight matrices and bias
vectors for the CvNN, i.e., Θ = {Wj , bj |j = 1, . . . , N} ∪
{Wo, bo}.

In this study, two types of complex activation functions are
used. The first is the complex rectified linear unit (CReLU),
used in the hidden layers, and is defined as:

ϕ(z) ≜ CReLU(z) = max(0, x) + ımax(0, y)

=




z, if x ≥ 0 and y ≥ 0
x, if x ≥ 0 and y < 0
ıy, if x < 0 and y ≥ 0
0, otherwise

(9)

where z = x + ıy is a complex number. The CReLU is a
nonlinear function with a domain of (−∞, +∞) and a range
of [0, +∞].

The second activation function is the complex softmax
function (Csoftmax), used in the output layer, and is expressed
as:

ϕo(zl)≜Csoftmax(zl)=
softmax(xl) + softmax(yl)

2
(10)

softmax(xl)=
exl

�L
m=1 e

xm

, softmax(yl)=
eyl

�L
m=1 e

ym

l = 1, · · · ,K,

where zl = xl+ ıyl is a complex number. The final prediction
of the CvNN is the label k∗ of the device with the highest
probability, that is k̂ ≜ l∗ = argmaxl ϕo(zl).

The parameters of the CvNN weight matrices and bias
vectors Θ are generally obtained by calculating the loss
between the CvNN output ϕo(z) and the labeled training data
t, then minimizing this loss. For this classification problem,
cross-entropy loss is adopted as the loss function:

E(ϕo(z), t) = −
K�
l=1

tl log ϕo(zl) (11)

s.t.
K�
l=1

tl = 1 and
K�
l=1

ϕ0(zl) = 1.

The parameters are updated to obtain the optimal output, us-
ing complex backpropagation and stochastic gradient descent
(SGD) algorithms [10] [15] [16].

TABLE I
SIMULATION SPECIFICATIONS

Item Specification
number of devices 10
CvNN structure 4-10-30-30-10
activation functions CReLU, CSoftmax
loss function cross-entropy
learning algorithm SGD
learning rate 0.01
epochs 10
batch size 32
training SNR (dB) 35
symbols per device 20000 × 128
training data 10 × 20000 × 128
test data 10 × 20000 × 128
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Fig. 3. K = 10 constellation patterns from modulation symbol sets Mk ,
k = 1, 2, . . . , 10, with device-specific I/Q imbalances

IV. SIMULATION RESULTS

In this section, we provide the simulation results for the
identification of K devices, following the methodology dis-
cussed in Section III.

A. Simulation Setup

We simulate the system consisting of an AP and K = 10
devices. The modulation scheme used is QPSK (with Q = 4
modulation symbols). The I/Q imbalance distortions, ϵk and δk
are independent random variables that follow uniform distribu-
tions over the ranges [ϵL = 0, ϵU = 0.3], [δL = 0, δU = 30◦],
respectively. Figure 3 shows the constellation patterns for each
of the 10 devices simulated, which reflect their respective
sets of modulation symbols affected by I/Q imbalances. The
patterns are color-coded for each device. In addition, the power
of the modulation symbols is normalized.

For channel coding, we used a polar code with a length
of 256 bits and a coding rate of 0.5. In the AP, successive
cancellation decoding is used for polar decoding [17].

The fully connected CvNN consists of an input layer with
Q = 4 nodes, three (N = 3) hidden layers with 10, 30, and
30 nodes, respectively, and an output layer with K = 10
nodes. The activation function used in each node in hidden
layers is the CReLU function of (9), while the output layer
uses the CSoftmax function of (10). The CvNN’s parameters
are updated using the SGD algorithm. Table I shows the
simulation specifications.

B. results

We trained the CvNN using the received data of the
10 × 20, 000 × 128 symbols at SNR of 35 dB, which are
polar coded in the transmitters. Then we tested the average
device identification error rate using another set of polar coded
received data of 10× 20, 000× 128 symbols at different SNR
values, with increments of 1 dB, as shown in Fig. 4.

For comparison, we also tested an RvNN (see Fig. 4), where
the input was divided into real and imaginary parts, resulting
in an input layer with 8 nodes. The structure of RvNN is the
same as that of CvNN, with three hidden layers of 10, 30,
and 30 nodes, and an output layer of 10 nodes. The RvNN
parameters were also updated using the SGD algorithm.

As shown in Fig. 4, the identification error rate using
CvNN is lower than that using RvNN. This is because, as
discussed in Section II, the outputs of the I path and the Q
path are correlated, which allows CvNN to capture the inherent
correlation in complex-valued I/Q symbols. For example, in
Fig. 5, the average correlation between the real and imaginary
parts of the received complex symbols was found to be 0.45,
indicating a strong correlation due to I/Q imbalances. In
RvNN, on the contrary, a complex symbol is separated into
its real and imaginary components, which are then processed
separately. This disrupts the correlation between these compo-
nents, leading to a decline in performance.

Furthermore, in Fig. 4, we calculate the identification error
rate using the maximum likelihood (ML) method for compar-
ison. This method calculates the Euclidean distance between
the estimated constellation pattern Q = {qi}Q−1

i=0 and the set
of modulation symbols Mk (k ∈ K), and identifies the device
with the smallest distance. Although ML identification is not
practical since the modulation symbol sets with I/Q imbalances
are not directly observable, it serves as a lower bound.

To verify the polar decoding effect on the performance of
the device identification system, we assume that demodulation
is perfectly accurate. In other words, we assume that the values
of dj in (6) are successfully estimated. This is called ideal de-
modulation. Fig. 6 compares the results of device identification
using polar decoding with those using ideal demodulation. The
error rate appears to be marginally influenced by inaccuracies
in polar decoding for both CvNN and RvNN, although it
remains within an acceptable range.

Next, we consider a transmission of only J = 4 symbols

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2510−4

10−3

10−2

10−1

100

SNR [dB]

E
rr

or
R

at
e

of
D

ev
ic

e
Id

en
tifi

ca
tio

n

CvNN
RvNN
ML

Fig. 4. Device identification using constellation patterns with I/Q imbalance
(number of transmitted symbols: 128 symbols)
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Fig. 5. An example of J = 20 received symbols of a device. Gray points:
rj , red points: qi, (i = 0, 1, 2, 3), forming a constellation pattern with I/Q
imbalances, black squares: ui ∈ M0, and blue points: si ∈ Mk
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Fig. 6. Comparison with ideal demodulation (number of transmitted symbols:
128 symbols)

that include all symbols in Mk of QPSK. We compared the
results of using the J = 128 transmitted symbols with using
the transmission of the 4 symbols with ideal demodulation,
as shown in Fig. 7. Comparison of results by the number
of transmitted symbols confirms that increasing the number
of symbols improves identification performance through pro-
cesses such as averaging on the received symbols.

Finally, we conducted simulations using 16QAM, a higher-
order modulation method, to compare it against the QPSK
simulations performed thus far. The results are shown in Fig. 8.
The comparison between QPSK and 16QAM reveals that
16QAM, being a higher-order modulation scheme, achieves
lower identification error rate. This is likely because 16QAM
has more features than QPSK, leading to improved identifica-
tion performance.
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Fig. 7. Comparison by the number of transmitted symbols (4 symbols vs.
128 symbols)
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Fig. 8. Comparison of QPSK and 16QAM with an identical count of message
bits

V. CONCLUSION

We proposed a CvNN-based device identification to enhance
the security of communications. Devices have I/Q impairments
that arise from variations in the manufacturing process. An AP
receives I/Q symbols from a device and forms a constellation
pattern, which has a unique feature of the device’s inherent
I/Q impariments. The CvNN is able to recognize the device
by categorizing the pattern. Simulations show that the CvNN
has a lower error rate in identification than an RvNN. This
is because the CvNN captures the inhenrent correlation in
complex-valued I/Q symbols caused by I/Q imbalances.
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