
Optimizing Task Offloading Migration Decisions:
An Advantage Actor-Critic Approach

Jin Zhu, Amiya Nayak
School of Electrical Engineering and Computer Science

University of Ottawa, Canada

Abstract—The paper presents a study on task offloading
migration decisions. The aim is to minimize the total latency of
the offloaded computational tasks. Actor-Critic algorithm was
employed to solve the problem, and real world taxi traces were
used to train and test the model. The results indicate that the
scheme of only migrating to neighboring servers performs well
compared with the scheme of only migrating to any server. The
model has good average rewards and converges faster, and has
a degree of generalization ability.

Index Terms—Mobile edge computing, service offloading, deep
reinforcement learning, actor-critic approach.

I. INTRODUCTION

Mobile user equipments (UEs), such as smartphones and
laptops evolves rapidly, so do the applications running on
them. Mobile applications are consuming more and more
computational resources, which quickly drain the battery.
One viable way of solving this problem is Mobile Cloud
Computing (MCC), which offload the compute-intensive tasks
to cloud servers [1]. Since the power supply of mobile devices
is very limited, this technology reduces power consumption
and extends battery life. However, offloading tasks to a con-
ventional centralized cloud may result in significant network
delay. In order to minimize the network delay, a technology
called Mobile Edge Computing (MEC) was introduced. MEC
moves servers from centralized data centers to the network
edge, bringing computational resources closer to end-users,
which greatly reduces the network delay and improves the
Quality-of-Service (QoS).

Although MEC reduces the computational overhead of
UEs, it also introduces some other expenses, such as the
time and energy consumption for data transmission, the time
consumption for remote task execution. It is necessary to
weigh the trade-off between energy and time consumption.
To address these issues, researchers have developed various
algorithms to generate efficient offloading decisions [2].

UEs might be moving at high speed while using the
offloading service, and they need to switch to another base
station in the cellular network. In addition to that, although
edge servers are closer to end-users, they have relatively
limited computational resources compared to powerful distant
centralized clouds that are located far away. This raises
another question, computational tasks or their results have to
be forwarded to other base stations. When, where and how to
migrate the tasks is also a fundamental problem which have
a significant impact on the system’s performance [3] [4].

II. RELATED WORK

A joint task offloading and migration approach based on
reinforcement learning was presented by Wang et al. [5] for
mobility-aware MEC networks. Their network model is a
two-layer cellular network with a macro base station and
many small cell network, each equipped with a small-cell
base station (SBS), tasks can be locally calculated by mobile
equipments or offloaded to the MEC server at SBS side. The
goal is to minimize a utility function of time and energy cost
of MEs. They solved the problem using Q-learning algorithm,
whose performance is better than that of the genetic algorithm,
randomly offloading algorithm and fully offloading algorithm.

Ding et al. [6] formulated two overhead optimization
problems in a MEC network with mobile UEs: the problem
of minimizing energy cost with constraints on resources
and latency, and the problem of minimizing latency with
constraints on resources and energy. Then they proposed and
proved three optimal task offloading and service migration
strategies when the service deployment strategy is given.

Han et al. [7] proposed a deep Q-learning network (DQN)
algorithm to achieve fast and sub-optimal dynamic task of-
floading and migration solution. Tasks can be migrated to
other edge servers or the centralized cloud. The goal is to
minimize a weighted sum of the time and energy cost of
MEs. The DQN algorithm was compared with three greedy
decision-making algorithms, which demonstrated that DQN
outperformed greedy algorithms.

Wang et al. [8] introduced a strategy for task offloading
and migration in a generic multi-layer fog system which min-
imizes the probability of migration. The authors proposed a
Gini coefficient-based algorithm for optimizing the offloading
decisions and a genetic algorithm for optimizing computation
resource allocation.

Wang et al. [4] modeled the service migration problem
as a partially observable Markov decision process and pro-
posed a deep recurrent off-policy actor-critic based algorithm.
Experiments using real-world taxi traces demonstrated that
the algorithm had an exceptionally good performance, much
better than five different online baseline algorithms.

III. METHODOLOGY

A. Introduction to the A2C Algorithm

The sequential decision making problem is what reinforce-
ment learning (RL) seeks to resolve. In RL, intelligent agents
can learn from interactions with the environment. In each
round, an agent would make a decision based on the current

122979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

state of the environment, then perform an action on the
environment and receive a reward. The environment would
transform to the next state. Reinforcement learning encom-
passes both policy-based techniques like REINFORCE and
value-based techniques like Q-learning. Value-based methods
focus on learning the value function, which takes a state as
input and outputs the value of that state. Policy-based methods
directly learn the policy function, which specifies the best
action in different states [9] [10].

The Actor-Critic algorithm incorporates aspects of both
policy-based and value-based approaches. Actor-Critic is a
category of algorithms which is composed of two parts: the
actor and the critic. The actor develops a better policy through
interacting with the environment. The information gathered by
the actor’s interactions with the surroundings is used by the
critic to learn a value function. Actor-Critic algorithms can
achieve better sample efficiency and converge faster than pure
policy-based and value-based methods. The state space of the
migration decision problem is continuous, so tabular methods
are unable to solve the problem. The Actor-Critic methods
employ two neural networks, allowing it to handle problems
with continuous state space. Actor-Critic algorithm is model-
free; thus, it is very suitable for complex and unknown
environments and more efficient.

The naive Actor-Critic algorithm is used in this research
because of its simplicity, training stability and robustness.
Advantage Actor-Critic (A2C) and other more complex forms
of Actor-Critic are not the same. Actor-Critic has fewer
hyperparameters and requires less parameter tuning tech-
niques. It is also easy to implement. Despite its simplicity,
it has good returns and convergence speed. We attempted to
implement the A2C algorithm, and made an effort to tune
the hyperparameters, but it didn’t converge well. Moreover,
it suffered from the problems of vanishing gradients and
exploding gradients.

The actor’s policy function’s parameter update formula is:
θ = θ + α∇θ log πθ(st, at)δ(t)

where θ is the parameters of the policy function, α is the
learning rate, πθ(st, at) is the policy function, δ(t) is the
Temporal Difference (TD) error [10]. The update formula for
the parameters of the critic’s model is:

δ = Rt+1 + γQ(St+1, At+1)−Q(St, At)

where Rt+1 is the reward, γ is the discount factor,
Q(St+1, At+1) is the estimated value of the state-action pair
at the next time step, Q(St, At) is the estimated value of the
state-action pair at the current time step.

B. Task Offloading and Migration Model
The model is adopted from Wang et al.’s work [4]. consists

of U mobile user equipments and M base stations, each
base station is equipped with a MEC server. Only offloaded
tasks are taken into consideration in this model. The user
equipment is always connected to the nearest base station
and the offloaded task is transmitted to that base station. The
associated MEC server is required to make a decision about
whether and where to migrate the task. The local server of a

UE is defined as the nearest server to the UE and the serving
server is defined as the server handling the offloaded task.

The QoS is measured in terms of latency which includes
computation, communication and migration delays. The mi-
gration delay is defined as:

B(u; dt) =

{
0, if dt = 0
datas

t (u)
ηm
t

+ σm
t dt, if dt ̸= 0

where t is the current time slot, dt is the distance of migration,
σm
t is the migration delay coefficient, datast (u) denotes the

size of service, and ηmt is the migration bandwidth. The
computation delay is given by:

D(at) =
ct

ct
wt(at)+ct

· f(at)
=

wt(at) + ct
f(at)

where ct is the CPU cycles needed for processing offloaded
task, wt(at) represents the serving server’s workload, and
f(at) denotes the server’s computational capacity. The MEC
servers all employ a weighted resource allocation strategy.
The communication delay is given by:

ρt = ω log2
(
1 + SNR(u,ml

t(u))
)

where ρt denotes the uplink transmission rate between UE
and its local server, ω represents the uplink bandwidth, and
SNR(u,ml

t(u)) corresponds to the SNR. The SNR is defined
as:

SNR(u,ml
t(u)) =

pu
∣∣gt(u,ml

t(u))
∣∣2

ωN
where pu is the transmission power of UE, N is the power
spectral density of white Gaussian noise, and gt(u,m

l
t(u))

corresponds to the channel gain. The access delay at time t
is:

R(u) =
dataot (u)

ρt

The backhaul delay at time t is:

P (u, yt) =

{
0, if yt = 0
dataot (u)

ηbh
t

+ σbh
t yt, if yt ̸= 0

where yt is the hop distance between local server and serving
server, σbh

t is the backhaul delay coefficient, and ηbht is the
backhaul bandwidth.The communication delay is defined as:

E(u, yt) = P (u, yt) +R(u)

The utility function is defined as:

min
a0,a1,...,aT

T∑
t=0

(E(u, yt) +B(u, dt) +D(at)) ,

s.t. at ∈ {1, 2, . . . ,M},

∀u ∈ {1, 2, . . . , U}

C. Application of Actor-Critic in Task Migration

1) Environment: The environment is mostly adopted from
the work of Wang et al. [4] with some modifications and
improvements. In this environment, a total of 64 base stations
are arranged in an 8 by 8 matrix, with each base station spaced
1 kilometer apart. This matrix is placed at the downtown area
of Rome and San Francisco, where the datasets come from. In
each time slot, every MEC server randomly generates a CPU
cycle required for the workload of that server, and every taxi

123

cab also randomly generates a task data volume and required
CPU cycle in a given range. The CPU frequencies of all
servers are same and constant. The tasks are offloaded to the
nearest server, waiting to be migrated or computed. Wireless
upload rate is calculated according to distance between the UE
and its base station. The backhaul delay coefficient is constant,
but migration delay coefficients are randomly generated in a
given range. The hop number between servers is defined as the
Manhattan distance. By reason of the large data volume and
irregular trace length of the datasets, all traces are truncated
to a fixed length, which makes the data of each trajectory neat
and tidy.

2) Action: In RL, action denotes the action an agent takes
which affects the environment. The action in this model is to
choose which server to migrate the tasks to. In Wang et al.’s
research [4], the tasks can be migrated to any server, thus the
action space is 64. We used a simplified migration scheme:
servers periodically exchange their workloads with one-hop
neighbors, and reduce the action space to three, which include
’do not migrate’, ’migrate to local server’, and ’migrate to
neighboring server with least workload’.

Algorithm 1 ActionSpace 3
1: procedure MIN WORKLOAD NBR
2: nbrs ← {my id + base station column,my id −

base station column,my id+ 1,my id− 1}
3: for each element in nbrs do
4: if element < 0 or

element > base station count or
ManhattanDistance(myid, element) > 1 then

5: remove element from nbrs
6: end if
7: end for
8: min workload ← INF
9: for each element in nbrs do

10: if element.workload < min workload then
11: min workload ← element.workload
12: min nbr ← element
13: end if
14: end for
15: return min nbr
16: end procedure

17: procedure STEP(action)
18: if action = no migrate then
19: pass
20: else if action = migrate min nbr then
21: serving server ← min workload nbr()
22: else if action = migrate local then
23: serving server ← local server
24: end if
25: . . .
26: end procedure

3) State: In RL, state is a complete description of the world
and does not hide any information, observation is a partial

description of the state and may omit some information [9].
Using full state as observation is too complex and often not
realistic. When the agent can only see partial observations,
this environment is called partially observable. In such cases,
RL is often modeled as a partially observable Markov decision
process [9]. In this migration decision problem, collecting the
full state from the whole system is also unrealistic. Moreover,
this environment demands high timeliness for data. Data
transmitted over the network may be outdated. As a result,
the observation only contains a few data items that are easily
accessible from the local server. The observed data items
of each UE are: local server index, transmission rate, data
volume and required CPU cycles of tasks.

4) Reward: As stated in Section III, the utility function
is to minimize the sum of migration, computation, and
communication delays. We define the reward as the negative
of sum of delays. To improve the training efficiency, 100
environments are run concurrently.

IV. EXPERIMENTAL DESIGN

A. Datasets
Two real-world datasets are used to train and test the model.

They are CRAWDAD ROMA/TAXI [11] and CRAWDAD
EPFL/MOBILITY [12]. They include mobility traces of taxis
in San Francisco, USA, and Rome, Italy, respectively. Each
data item is composed of driver ID, time, and GPS coordi-
nates. The time interval between adjacent data points may be
too short, and the GPS coordinates’ distance may be too close,
so data items are taken at intervals. The data items located
outside the 8 km × 8 km downtown area are removed. The
trajectories of taxis reflect the true shape of urban roads and
the real patterns of vehicle movement, making them highly
suitable for this experiment. In both datasets, 120 traces have
been used as training and 30 traces as testing sets.

B. Parameter Selection & Evaluation Metrics
The parameter values (in Table I) of the simulated environ-

ment are the same as [4]. The hyperparameters of A2C are

TABLE I
ENVIROMENT PARAMETERS [4]

Simulation Parameter Value
Total MEC servers (M) 64
Computational capacity (f) of each MEC server 128 GHz
Upload rate (ρt) {60, 48, 36, 24, 12} Mbps
Bandwidth (ηt) of backhaul network 500 Mbps
Coefficient (σbh

t) of backhaul delay 0.02 s/hop
Coefficient (σm

t) of migration delay U [1.0, 3.0] s/hop
Data size (datasst (u)) of the service data U [0.5, 100] MB
Data size (dataot (u)) of each offloaded task U [0.05, 5] MB
Processing density of an offloaded task, κ U [200, 10000] cycles/bit
Task arrival rate (λu

p) for user p2 tasks/slot
Task arrival rate (λs

p) for MEC server U [5, 20] tasks/slot
Trace interval Rome:12, SF:3

given in Table II. The algorithm is evaluated with average
reward, convergence speed and generalization ability.

124

TABLE II
A2C HYPERPARAMETERS

Hyperparameter Value
Learning rate (actor) 1e-3
Learning rate (critic) 1e-2
Discount factor (gamma) 0.8
Number of steps (T) 100
Number of epochs 1000
Batch size 120
Neural network hidden dimension 256
Optimizer Adam

V. RESULTS AND ANALYSIS

A. Performance Comparison

Figures 1 and 2 show the convergence curve with the
setup mentioned above on Rome dataset. ’ma rewards’ means
moving average of 10 rewards. Figures 3 and 4 show the
convergence curve with the setup mentioned above on San
Francisco dataset. Figures 1 and 3 have action space 3, which
means tasks can choose among migrating to local server,
migrating to neighboring server with lease workload, and do
not migrate. Figures 2 and 4 have action space 64, which
means task can migrate to any server. Table III shows the
episodes which the relative change rate of moving average
rewards drops to less than 0.05%.

TABLE III
NUMBER OF EPISODES WHEN THE MODELS CONVERGE

Dataset Action Space Number of episode
Rome 3 32
Rome 64 53
SF 3 35
SF 64 48

Fig. 1. Training on Rome Data, Action Space = 3

Figure 5 shows the comparison of average rewards of mi-
gration with different action schemes and that of no migration
scheme (tasks are always computed at the server they are

Fig. 2. Training on Rome Data, Action Space = 64

Fig. 3. Training on SF Data, Action Space = 3

Fig. 4. Training on SF Data, Action Space = 64

125

offloaded to). Figure 5 also shows the generalization abilities
of models trained with the two datasets. Model trained with
Rome is tested using San Francisco dataset and vice versa.

Fig. 5. Comparison of Average Latencies

Fig. 6. Tests of Generalization Ability

B. Interpretation of Experimental Results

By comparing the convergence curve of schemes with
different action spaces in Figure 1 to Figure 4 and Table III,
we found that migrating only to neighboring servers makes the
model to converge faster. This conclusion holds true for both
datasets. However, the convergence curve of migrating only
to neighboring servers exhibits more oscillations. This means
reducing the action space to 3 speeds up convergence, saving
computational resources and training time. By comparing the
average latencies of no migration and schemes with different
action spaces, we found that the average rewards of two
schemes are nearly identical. This implies that we can main-
tain almost the same performance while reducing training
overhead. Experiments of testing models trained on the other
dataset demonstrate that these two models have a certain
degree of generalization ability. Through this experiment, we
found that the model does not have to be trained on the data

of the city it is used in. Instead, we can train the model on
a limited number of cities and apply the model to numerous
other cities, which can greatly reduce the cost associated with
training.

VI. CONCLUSION

In this research, we proposed a scheme of migrating to
neighboring servers and train a Actor-Critic model to make
the migration decisions. The findings are as follows: trans-
ferring the destination to 1-hop neighboring servers does not
negatively effect the reward significantly, but it accelerates
the convergence speed of the model and reduce the training
overhead; therefore, it is a good a good alternative method.
The Actor-Critic algorithm performs well in this environment,
since it has good rewards, fast convergence speed and shows
good degree of generalization ability.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[2] W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, and H. Duan, “Mobility-
aware multi-user offloading optimization for mobile edge computing,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3341–
3356, 2020.

[3] A. Nayak and I. Stojmenovic, Handbook of applied algorithms: Solving
scientific, engineering, and practical problems. John Wiley & Sons,
2007.

[4] J. Wang, J. Hu, G. Min, Q. Ni, and T. El-Ghazawi, “Online service
migration in mobile edge with incomplete system information: A deep
recurrent actor-critic learning approach,” IEEE Transactions on Mobile
Computing, vol. 22, no. 11, pp. 6663–6675, 2023.

[5] D. Wang, X. Tian, H. Cui, and Z. Liu, “Reinforcement learning-based
joint task offloading and migration schemes optimization in mobility-
aware mec network,” China Communications, vol. 17, no. 8, pp. 31–44,
2020.

[6] Y. Ding, C. Liu, K. Li, Z. Tang, and K. Li, “Task offloading and service
migration strategies for user equipments with mobility consideration
in mobile edge computing,” in 2019 IEEE Intl Conf on Parallel
Distributed Processing with Applications, Big Data Cloud Computing,
Sustainable Computing Communications, Social Computing Network-
ing (ISPA/BDCloud/SocialCom/SustainCom), 2019, pp. 176–183.

[7] Y. Han, X. Li, and Z. Zhou, “Dynamic task offloading and service
migration optimization in edge networks,” International Journal of
Crowd Science, vol. 7, no. 1, pp. 16–23, 2023.

[8] D. Wang, Z. Liu, X. Wang, and Y. Lan, “Mobility-aware task offloading
and migration schemes in fog computing networks,” IEEE Access,
vol. 7, pp. 43 356–43 368, 2019.

[9] J. J. Qi Wang, Yiyuan Yang, Easy RL: Reinforcement Learning
Tutorial. Beijing: Posts Telecom Press, 2022. [Online]. Available:
https://github.com/datawhalechina/easy-rl

[10] Y. Y. Weinan Zhang, Jian Shen, Hands-on Reinforcement
Learning. Beijing: Posts Telecom Press, 2022. [Online]. Available:
https://hrl.boyuai.com/

[11] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici,
and A. Rabuffi, “Crawdad roma/taxi,” 2022. [Online]. Available:
https://dx.doi.org/10.15783/C7QC7M

[12] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Gross-
glauser, “Crawdad epfl/mobility,” 2022. [Online]. Available:
https://dx.doi.org/10.15783/C7J010

126

