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Abstract—Supercomputers are essential tools in modern 
scientific and industrial research, performing complex 
computations and large-scale data processing swiftly and 
accurately through high-performance computing (HPC). To 
maximize the performance of these supercomputers and ensure 
stable operations, efficient operating system deployment and 
real-time resource management are crucial. However, current 
commercial cluster management tools rely on foreign software, 
leading to increased costs in procurement and maintenance. To 
address this issue, the Korea Institute of Science and Technology 
Information (KISTI) implemented its proprietary intelligent 
cluster management system, KiERA, to enhance the operating 
system deployment performance for its fifth supercomputer, 
Nurion. This study focused on adapting the existing proprietary 
operating system, initially used exclusively for Nurion, to work 
effectively with KiERA. The performance of KiERA's operating 
system deployment was evaluated on 169 compute nodes and 
compared to the commercial software, Bright Cluster Manager 
(BCM). Experimental results demonstrated that KiERA 
completed node deployments in approximately 430 s on average, 
showcasing improved deployment efficiency over the existing 
method. Furthermore, the study suggests the potential for 
deploying up to 13,000 nodes simultaneously in large-scale 
supercomputer environments. This research contributes to 
improving supercomputer operational efficiency while reducing 
dependency on foreign software. 
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I. INTRODUCTION  
Supercomputers have become indispensable tools in 

modern scientific research and various industries, particularly 
for rapidly and accurately processing large-scale data and 
performing complex calculations. They are widely used in 
climate change prediction, genetic analysis, drug development, 
and astrophysical simulations. High-performance computing 
(HPC) is crucial in significantly accelerating research and 
development. With advancements in cutting-edge 
technologies, such as artificial intelligence, big data analysis, 
and machine learning, the importance of supercomputers 
continues to grow [1]. 

To maximize the performance of supercomputers and 
ensure stable operation, an efficient operating system 
deployment, real-time monitoring, and resource management 
for large-scale nodes are essential [2]. Cluster management 
systems are crucial for handling these tasks intelligently. 
These systems detect the status of nodes in real time, rapidly 
deploy operating systems, and proactively identify potential 
issues to ensure stable system operations. However, most 

commercial cluster management tools are foreign software, 
and certain technical limitations to their application exist in 
domestic system environments optimized for local needs. 
Additionally, these foreign software solutions incur increased 
initial deployment, maintenance, and license costs over time. 

For instance, the Korea Institute of Science and 
Technology Information’s (KISTI) fifth supercomputer, 
known as “Nurion,” manages its 8,437 compute nodes using 
the commercial software Bright Cluster Manager (BCM) [3]. 
This software is used for tasks such as operating system 
deployment and maintenance. However, BCM operates under 
a licensing model that incurs costs per node. As the number of 
nodes increases, the associated financial burden rises. 
Moreover, the license should be renewed annually, further 
augmenting ongoing maintenance costs. 

To address this issue, KISTI developed its intelligent 
cluster management system (KiERA) in 2019 [4]. KiERA 
offers features such as remote hardware-monitoring tools and 
the ability to deploy operating systems across large-scale 
nodes quickly. It aims to reduce reliance on commercial 
software such as BCM. This study focuses on applying 
KiERA to 169 computing nodes of the Nurion supercomputer 
and compares its performance in deploying operating systems 
with that of the existing BCM solution. The aim is to evaluate 
the efficiency of operating system deployment and suggest 
ways to improve the performance compared with traditional 
deployment methods. 

These research outcomes are expected to help the KISTI 
implement an optimized next-generation cluster management 
system tailored to the needs of domestic research institutions. 
Additionally, it aims to reduce the reliance on foreign software, 
lower long-term maintenance costs, and enhance the stability 
of system operations. 

 

II. RELATED WORK 

A. Intelligent Cluster Operation Management System 
(KiERA) 
KiERA is a web-based intelligent cluster operation 

management system developed to efficiently configure and 
manage internal clusters along with large-scale 
supercomputers introduced and operated by KISTI. KiERA is 
based on the Python Django Web framework and consists of 
four main services: Celery, Daphne, SoL-Broker, and uWSGI. 
Internally, it provides web services based on Nginx and uses 
RabbitMQ message queues and MariaDB for data processing  
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Fig. 1. Overall structure of KiERA 

 

and management. Fig. 1 shows the overall structure of KiERA. 

When users connect to the KiERA system through a Web 
browser, they can monitor the cluster status or execute 
commands. The frontend operates based on Django and 
provides static resources and user interface elements. 
WebSocket handles real-time communication services, 
enabling users to monitor cluster status in real time or send 
commands. It also offers HTTP-based REST APIs for 
executing cluster management commands or accessing 
resources. In the Fig. 1, Daphne handles real-time 
communication through WebSocket, whereas all other static 
services are processed by uWSGI. Celery functions as a 
scheduler, executing distributed and asynchronous tasks and 
scheduling all tasks received from Daphne and uWSGI. 

The key features of KiERA include node management, 
group management, IPMI command execution for 
nodes/groups, cluster management, script management, image 
management, subnet management, preinstallation 
environment management, IPMI SoL scan functionality, and 
KiERA service management. The preinstallation environment 
used in KiERA (based on Ubuntu 22.04) supports the running 
of a lightweight operating system in memory to collect 
hardware information from nodes or install the actual 
operating system on the disk before deploying the actual nodes. 
This fixed preinstallation environment [5] allows for the easy 
support of various operating systems, hardware, and software, 
enabling quick handling of requirements and automation 
processes from a system maintenance perspective. 

B. Supercomputer No. 5: Nurion 
Supercomputer No. 5, Nurion (NURION) [6], is a Linux-

based massively parallel cluster system with a theoretical peak 
performance of 25.7 Pflops, making it a high-performance 
computer. It consists of 8,437 compute nodes, including 8,305 
compute nodes with many-core Knights Landing (KNL) 
CPUs and 132 CPU-only nodes. Nurion can also handle large-
scale I/O requests through its 100G-based Intel Omni Path 
Architecture (OPA) high-performance interconnects and burst 
buffers. Fig. 2 illustrates the Ethernet network configuration 
of Nurion’s computing nodes [7]. 

As illustrated in the Fig. 2, four 10G Ethernet switches 
were stacked to operate as a single switch and configured in a 
high-availability setup. The ports of the 10G Ethernet were 
connected to 1G Ethernet switches (edge switches) located in 
each rack and BCM management nodes. 

 

Fig. 2. Nurion Ethernet network configuration 

 

Currently, the cluster operation management system used 
in Nurion is the BCM v8, with two main servers responsible 
for its operation. The BCM manages the deployment 
operating system on a file basis, and the rsync command 
provided by Linux is used to transfer files during OS 
deployment. The OS deployment process in Nurion is as 
follows: first, the two BCM main servers are deployed to 
approximately 130 CPU nodes through the BCM relay servers. 
Each relay server then deploys diskless RHEL 7.9 BCM-
specific operating system files (approximately 5.1 GB) to the 
remaining 8,305 KNL computing nodes. The entire system 
deployment, including the CPU relay servers and KNL 
computing nodes, requires approximately 2 h in the BCM. The 
actual deployment of the KNL compute nodes requires 
approximately 50 min, with the remaining time spent 
deploying the relay servers accompanying the OS images used 
by the relay servers. When the relay servers complete the 
deployment to the compute nodes, they begin to perform the 
same role as the compute nodes. 

 

III. EXPERIMENT 

A. Experimental Environment 
The experiment conducted in this study was designed to 

evaluate the deployment performance of a single KiERA 
server (ProLiant DL380 Gen10 Skylake, Intel Xeon Gold 
6152 2.1G, 44 CPUs, 192 GB RAM) by configuring a KNL 
VLAN 169 node. The deployment network consisted of 1G 
Ethernet and 100G OPA, where Ethernet was used to 
download the TFTP-based grub bootloader (716 KB), HTTP-
based initrd (approximately 110 MB), and kernel 
(approximately 6.8 MB). The OPA network was used to 
download large rootfs via HTTP. The deployed operating 
system used the RHEL 7.9 BCM-specific image that is 
currently in use. To use the BCM-specific images, the initial 
temporary root file system (initrd) and kernel were replaced 
with official files. The initrd was modified to include the OPA 
driver, enabling the downloading of the rootfs. Furthermore, 
the rootfs were converted from an individual file-based system 
to a single SquashFS image, thereby reducing the size to 
approximately 2 GB. Table I compares the rootfs file transfer 
methods of BCM and KiERA and summarizes the actual 
performance differences in file transfers. 
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TABLE I.  COMPARISON OF ROOTFS TRANSFER METHODS BETWEEN 
BCM AND KIERA 

 BCM KiERA 

Rootfs Transfer Method 
 

 

rsync http (wget) 

Operating System 
Format 

 
 

Individual files squshfs 

Rootfs Size (GB) 
 

 

5.1 2 

OPA-based rootfs Transfer 
Time (s) 

 
 

214 26 

 

As presented in Table 2, KiERA reduced the rootfs file 
size by more than 60% by converting the rootfs from an 
individual file format to a SquashFS-based compressed image 
format, thus reducing the number of files to one. This resulted 
in a significant reduction in the transfer time of OPA-based 
rootfs compared to that of BCM. However, because SquashFS 
is a read-only file system, KiERA combines it with an 
additional OverlayFS to provide a read–write environment. 

B. Initialization Script for initrd 
The operating system of Supercomputer No. 5, Nurion, 

operates on a diskless basis and runs optimized initialization 
scripts using the BCM. However, these initialization scripts 
are BCM-specific files and can only be used in clusters 
managed by the BCM. Therefore, separate modifications are 
required for their use in other cluster management tools. 
Therefore, this study created custom initialization scripts for a 
diskless operating system running on Nurion and applied them 
to KiERA. The officially supported initrd and kernel version 
(3.10.0-1160.119) were used for modifying the initrd. The 
primary purpose of this initialization script was to execute the 
scripts necessary at various stages of initialization, including 
kernel module loading, network configuration, and mounting 
of the root file system. The initialization script includes 
several scripts that execute related functions and processes at 
each stage. The entire process consisted of six stages with the 
following detailed steps: 

• Loading Script Sources - Before subscript is 
executed, a script that defines the necessary functions 
and mounts the kernel space is loaded. Each function 
supports system configuration or recovery tasks 
during the boot process, such as displaying messages, 
reading kernel parameters, and providing a BASH 
shell environment. 

• System Information Output - The script displays 
diskless image-related information about the KiERA 
system at the terminal, enabling users to clearly 
understand the environment in which they are 
working. 

• Emergency Shell Invocation - An emergency shell 
is opened to allow the user direct access to the system 
if needed. This provides a shell that can be accessed 
in urgent situations when issues arise in the system 
and enables system monitoring through a serial 
console, if necessary. 

• Kernel Module Loading and Network 
Configuration - Necessary kernel modules are 
loaded to prepare the system for additional use during 

the boot process, and the network interfaces are 
reconfigured. Particularly, the OPA driver module 
(hf1 module) is loaded to enable the use of the OPA 
network. During network configuration, the dhcp 
client is re-executed to obtain a new IP address. 

• Root File System Download and Mounting - The 
root file system is downloaded and mounted to 
prepare the system for use. In KiERA, the necessary 
data source files are first downloaded to obtain a root 
file system. The data source provides the network 
configuration information, instance metadata, and 
various environmental variables required for booting. 
The mounting process involves configuring the root 
file system using SquashFS and an overlay file system. 
SquashFS is used as a read-only file system, and 
OverlayFS is used to provide read–write capabilities. 
This enables the configuration of a dynamic file 
system during booting. 

• Service Registration and Linux Initialization - 
Required services are registered in the system, and 
Linux starts to complete the booting process. This 
includes reading the kernel parameters, configuring 
systemd services, reporting the complete provisioning 
status, and setting the hostname. The final steps of the 
booting process involve dynamically configuring the 
root file system and correctly mounting the base 
system directories to establish a chroot environment. 
The system is then executed to initialize it and start 
the Linux. 

C. Experimental Procedure 
The experiment was divided into four stages: discovery, 

commissioning (preinstallation environment), cluster 
configuration, and deployment. Each stage is outlined as 
follows. The experiment conducted in this study aimed to 
verify the efficiency of KiERA-based operating system 
deployment and was conducted in the following four stages: 

• Discovery Stage 
1) Board Management Controller (BMC) Network 

Information Registration: BMC ID, password, IP address, and 
port information are entered to configure the BMC network. 
2) Target Node Scanning: The IPMI SoL scan feature is used 
to scan the entire BMC network, and the target nodes are 
temporarily registered. During this process, all temporarily 
registered nodes can be controlled by IPMI. 

• Commissioning (Preinstallation Environment) 
Stage 

1) Target node commissioning: Pre-boot eXecution 
Environment (PXE) boot settings were modified, and reboot 
commands were executed to initiate the commissioning 
process. 2) Hardware Information Collection and Registration: 
Through the commissioning process, hardware information 
such as the CPU, memory, storage devices, GPUs, and other 
PCIe devices for each node were collected and registered in 
the database. 

• Cluster Configuration Stage 
1) Cluster Creation: The cluster name, group name, number of 
nodes per rack, and node name prefix were entered. The target 
and head nodes were selected for inclusion in the cluster. 2) 
SSH Key Management: New SSH keys were generated or  
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existing keys were registered. 3) Network Configuration: Both 
Ethernet and OPA networks were collectively configured. For 
the cluster network configuration, when the initial IP address 
is entered, the remaining nodes are automatically assigned IP 
addresses sequentially. 

• Deployment Stage 
Image Preparation: We prepared the rootfs based on the 

RHEL 7.9 BCM-specific image, the modified official initrd, 
and the kernel. 2) Image Registration and Deployment: The 
prepared image files were registered in KiERA, and 
deployment was performed using the designated image. 
During this stage, the rootfs image compressed in SquashFS 
format was used, and high-speed transmission was facilitated 
through the OPA network. 

 

IV. RESULT AND ANALYSIS 
The deployment of the operating system to 169 computing 

nodes using KiERA revealed differences in the download 
times of the initrd and rootfs files as well as the overall 
deployment completion time for each node. In Fig. 3, the X-
axis represents the node ID, and the Y-axis illustrates the 
download time. The results indicated that most nodes 
completed the initrd download within approximately 185 to 
400 s. However, a few nodes experienced network bottlenecks, 
resulting in download times exceeding 450 s. This 
phenomenon highlights the bandwidth limitations of the 
Ethernet network when using the grub bootloader to download 
the initrd, and suggests that simultaneous deployment is 
feasible for up to 165 nodes. As illustrated in Fig. 4, the rootfs 
download commenced after the initrd download was 
completed. Approximately 14 nodes completed the rootfs 
download within 10 s, whereas the download time gradually 
increased to approximately 130 s for the 100th node. However, 
for nodes beyond the 100th node, the download time increased 
sharply, with some nodes requiring up to 800 s. This finding 
indicates a bandwidth limitation in the OPA network, where 
simultaneous deployment is optimal for up to 100 nodes. Fig. 
5 illustrates the total deployment completion time, which 
combines the initrd and rootfs download times. The total 
deployment time ranged from 189 s to 1,217 s, with the rootfs 
download time having the most significant impact on the 
overall completion time. When 100 nodes were deployed 
simultaneously, the average deployment time was 
approximately 430 s (7 min and 10 s). 

Based on these experimental results, it is estimated that 
KiERA can simultaneously deploy up to 13,000 computing 

nodes in a single deployment cycle (approximately 430 s) if 
130 relay servers are used. However, this is a theoretical 
estimate, and further verification in large-scale supercomputer 
environments is required. 

 

V. CONCLUSION AND FUTURE WORK 
In this study, we proposed a method for deploying 

operating systems in supercomputers using KiERA and 
conducted a performance comparison with the existing BCM 
system. The results showed that KiERA completed operating 
system deployment within an average of 7 min and 10 s for 
169 nodes, demonstrating a significantly improved 
deployment efficiency compared with the BCM-based 
approach. When deploying more than 100 nodes 
simultaneously, network bottlenecks occur, causing a sharp 
increase in the deployment time. This issue can be attributed 
to the bandwidth limitations of OPA networks, necessitating 
further research to address this limitation. Additionally, the 
study suggested the potential for KiERA to deploy up to 
13,000 nodes simultaneously, which can significantly enhance 
the operating system deployment efficiency in large-scale 
supercomputer environments. 

Future research will focus on optimizing KiERA 
performance in large-scale supercomputer environments and 
exploring solutions to mitigate OPA network bottlenecks. 
Through these efforts, KiERA is expected to contribute to 
improving the operational efficiency of supercomputers, both 
domestically and internationally. 
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Fig. 3. Initrd download time per node 

 

 

Fig. 4. Rootfs download time per node 

 

 

Fig. 5. Deployment completion time per node 
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