

Intelligent Operating System Deployment Strategy
Based on KiERA for Optimizing Supercomputers

Seungwoo Rho
Div. of National Supercomputing

Korea Institute of Science and
Technology Information
Daejeon, South Korea

seungwoo0926@kisti.re.kr

Jinseung Ryu
Div. of National Supercomputing

Korea Institute of Science and
Technology Information
Daejeon, South Korea

jsu@kisti.re.kr

Kimoon Jeong
Div. of National Supercomputing

Korea Institute of Science and
Technology Information
Daejeon, South Korea
kmjeong@kisti.re.kr

Abstract—Supercomputers are essential tools in modern
scientific and industrial research, performing complex
computations and large-scale data processing swiftly and
accurately through high-performance computing (HPC). To
maximize the performance of these supercomputers and ensure
stable operations, efficient operating system deployment and
real-time resource management are crucial. However, current
commercial cluster management tools rely on foreign software,
leading to increased costs in procurement and maintenance. To
address this issue, the Korea Institute of Science and Technology
Information (KISTI) implemented its proprietary intelligent
cluster management system, KiERA, to enhance the operating
system deployment performance for its fifth supercomputer,
Nurion. This study focused on adapting the existing proprietary
operating system, initially used exclusively for Nurion, to work
effectively with KiERA. The performance of KiERA's operating
system deployment was evaluated on 169 compute nodes and
compared to the commercial software, Bright Cluster Manager
(BCM). Experimental results demonstrated that KiERA
completed node deployments in approximately 430 s on average,
showcasing improved deployment efficiency over the existing
method. Furthermore, the study suggests the potential for
deploying up to 13,000 nodes simultaneously in large-scale
supercomputer environments. This research contributes to
improving supercomputer operational efficiency while reducing
dependency on foreign software.

Keywords—provisioning, supercomputer, cluster management,
operating system, deployment

I. INTRODUCTION
Supercomputers have become indispensable tools in

modern scientific research and various industries, particularly
for rapidly and accurately processing large-scale data and
performing complex calculations. They are widely used in
climate change prediction, genetic analysis, drug development,
and astrophysical simulations. High-performance computing
(HPC) is crucial in significantly accelerating research and
development. With advancements in cutting-edge
technologies, such as artificial intelligence, big data analysis,
and machine learning, the importance of supercomputers
continues to grow [1].

To maximize the performance of supercomputers and
ensure stable operation, an efficient operating system
deployment, real-time monitoring, and resource management
for large-scale nodes are essential [2]. Cluster management
systems are crucial for handling these tasks intelligently.
These systems detect the status of nodes in real time, rapidly
deploy operating systems, and proactively identify potential
issues to ensure stable system operations. However, most

commercial cluster management tools are foreign software,
and certain technical limitations to their application exist in
domestic system environments optimized for local needs.
Additionally, these foreign software solutions incur increased
initial deployment, maintenance, and license costs over time.

For instance, the Korea Institute of Science and
Technology Information’s (KISTI) fifth supercomputer,
known as “Nurion,” manages its 8,437 compute nodes using
the commercial software Bright Cluster Manager (BCM) [3].
This software is used for tasks such as operating system
deployment and maintenance. However, BCM operates under
a licensing model that incurs costs per node. As the number of
nodes increases, the associated financial burden rises.
Moreover, the license should be renewed annually, further
augmenting ongoing maintenance costs.

To address this issue, KISTI developed its intelligent
cluster management system (KiERA) in 2019 [4]. KiERA
offers features such as remote hardware-monitoring tools and
the ability to deploy operating systems across large-scale
nodes quickly. It aims to reduce reliance on commercial
software such as BCM. This study focuses on applying
KiERA to 169 computing nodes of the Nurion supercomputer
and compares its performance in deploying operating systems
with that of the existing BCM solution. The aim is to evaluate
the efficiency of operating system deployment and suggest
ways to improve the performance compared with traditional
deployment methods.

These research outcomes are expected to help the KISTI
implement an optimized next-generation cluster management
system tailored to the needs of domestic research institutions.
Additionally, it aims to reduce the reliance on foreign software,
lower long-term maintenance costs, and enhance the stability
of system operations.

II. RELATED WORK

A. Intelligent Cluster Operation Management System
(KiERA)
KiERA is a web-based intelligent cluster operation

management system developed to efficiently configure and
manage internal clusters along with large-scale
supercomputers introduced and operated by KISTI. KiERA is
based on the Python Django Web framework and consists of
four main services: Celery, Daphne, SoL-Broker, and uWSGI.
Internally, it provides web services based on Nginx and uses
RabbitMQ message queues and MariaDB for data processing

117979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

Fig. 1. Overall structure of KiERA

and management. Fig. 1 shows the overall structure of KiERA.

When users connect to the KiERA system through a Web
browser, they can monitor the cluster status or execute
commands. The frontend operates based on Django and
provides static resources and user interface elements.
WebSocket handles real-time communication services,
enabling users to monitor cluster status in real time or send
commands. It also offers HTTP-based REST APIs for
executing cluster management commands or accessing
resources. In the Fig. 1, Daphne handles real-time
communication through WebSocket, whereas all other static
services are processed by uWSGI. Celery functions as a
scheduler, executing distributed and asynchronous tasks and
scheduling all tasks received from Daphne and uWSGI.

The key features of KiERA include node management,
group management, IPMI command execution for
nodes/groups, cluster management, script management, image
management, subnet management, preinstallation
environment management, IPMI SoL scan functionality, and
KiERA service management. The preinstallation environment
used in KiERA (based on Ubuntu 22.04) supports the running
of a lightweight operating system in memory to collect
hardware information from nodes or install the actual
operating system on the disk before deploying the actual nodes.
This fixed preinstallation environment [5] allows for the easy
support of various operating systems, hardware, and software,
enabling quick handling of requirements and automation
processes from a system maintenance perspective.

B. Supercomputer No. 5: Nurion
Supercomputer No. 5, Nurion (NURION) [6], is a Linux-

based massively parallel cluster system with a theoretical peak
performance of 25.7 Pflops, making it a high-performance
computer. It consists of 8,437 compute nodes, including 8,305
compute nodes with many-core Knights Landing (KNL)
CPUs and 132 CPU-only nodes. Nurion can also handle large-
scale I/O requests through its 100G-based Intel Omni Path
Architecture (OPA) high-performance interconnects and burst
buffers. Fig. 2 illustrates the Ethernet network configuration
of Nurion’s computing nodes [7].

As illustrated in the Fig. 2, four 10G Ethernet switches
were stacked to operate as a single switch and configured in a
high-availability setup. The ports of the 10G Ethernet were
connected to 1G Ethernet switches (edge switches) located in
each rack and BCM management nodes.

Fig. 2. Nurion Ethernet network configuration

Currently, the cluster operation management system used
in Nurion is the BCM v8, with two main servers responsible
for its operation. The BCM manages the deployment
operating system on a file basis, and the rsync command
provided by Linux is used to transfer files during OS
deployment. The OS deployment process in Nurion is as
follows: first, the two BCM main servers are deployed to
approximately 130 CPU nodes through the BCM relay servers.
Each relay server then deploys diskless RHEL 7.9 BCM-
specific operating system files (approximately 5.1 GB) to the
remaining 8,305 KNL computing nodes. The entire system
deployment, including the CPU relay servers and KNL
computing nodes, requires approximately 2 h in the BCM. The
actual deployment of the KNL compute nodes requires
approximately 50 min, with the remaining time spent
deploying the relay servers accompanying the OS images used
by the relay servers. When the relay servers complete the
deployment to the compute nodes, they begin to perform the
same role as the compute nodes.

III. EXPERIMENT

A. Experimental Environment
The experiment conducted in this study was designed to

evaluate the deployment performance of a single KiERA
server (ProLiant DL380 Gen10 Skylake, Intel Xeon Gold
6152 2.1G, 44 CPUs, 192 GB RAM) by configuring a KNL
VLAN 169 node. The deployment network consisted of 1G
Ethernet and 100G OPA, where Ethernet was used to
download the TFTP-based grub bootloader (716 KB), HTTP-
based initrd (approximately 110 MB), and kernel
(approximately 6.8 MB). The OPA network was used to
download large rootfs via HTTP. The deployed operating
system used the RHEL 7.9 BCM-specific image that is
currently in use. To use the BCM-specific images, the initial
temporary root file system (initrd) and kernel were replaced
with official files. The initrd was modified to include the OPA
driver, enabling the downloading of the rootfs. Furthermore,
the rootfs were converted from an individual file-based system
to a single SquashFS image, thereby reducing the size to
approximately 2 GB. Table I compares the rootfs file transfer
methods of BCM and KiERA and summarizes the actual
performance differences in file transfers.

118

TABLE I. COMPARISON OF ROOTFS TRANSFER METHODS BETWEEN
BCM AND KIERA

 BCM KiERA

Rootfs Transfer Method

rsync http (wget)

Operating System
Format

Individual files squshfs

Rootfs Size (GB)

5.1 2

OPA-based rootfs Transfer
Time (s)

214 26

As presented in Table 2, KiERA reduced the rootfs file
size by more than 60% by converting the rootfs from an
individual file format to a SquashFS-based compressed image
format, thus reducing the number of files to one. This resulted
in a significant reduction in the transfer time of OPA-based
rootfs compared to that of BCM. However, because SquashFS
is a read-only file system, KiERA combines it with an
additional OverlayFS to provide a read–write environment.

B. Initialization Script for initrd
The operating system of Supercomputer No. 5, Nurion,

operates on a diskless basis and runs optimized initialization
scripts using the BCM. However, these initialization scripts
are BCM-specific files and can only be used in clusters
managed by the BCM. Therefore, separate modifications are
required for their use in other cluster management tools.
Therefore, this study created custom initialization scripts for a
diskless operating system running on Nurion and applied them
to KiERA. The officially supported initrd and kernel version
(3.10.0-1160.119) were used for modifying the initrd. The
primary purpose of this initialization script was to execute the
scripts necessary at various stages of initialization, including
kernel module loading, network configuration, and mounting
of the root file system. The initialization script includes
several scripts that execute related functions and processes at
each stage. The entire process consisted of six stages with the
following detailed steps:

• Loading Script Sources - Before subscript is
executed, a script that defines the necessary functions
and mounts the kernel space is loaded. Each function
supports system configuration or recovery tasks
during the boot process, such as displaying messages,
reading kernel parameters, and providing a BASH
shell environment.

• System Information Output - The script displays
diskless image-related information about the KiERA
system at the terminal, enabling users to clearly
understand the environment in which they are
working.

• Emergency Shell Invocation - An emergency shell
is opened to allow the user direct access to the system
if needed. This provides a shell that can be accessed
in urgent situations when issues arise in the system
and enables system monitoring through a serial
console, if necessary.

• Kernel Module Loading and Network
Configuration - Necessary kernel modules are
loaded to prepare the system for additional use during

the boot process, and the network interfaces are
reconfigured. Particularly, the OPA driver module
(hf1 module) is loaded to enable the use of the OPA
network. During network configuration, the dhcp
client is re-executed to obtain a new IP address.

• Root File System Download and Mounting - The
root file system is downloaded and mounted to
prepare the system for use. In KiERA, the necessary
data source files are first downloaded to obtain a root
file system. The data source provides the network
configuration information, instance metadata, and
various environmental variables required for booting.
The mounting process involves configuring the root
file system using SquashFS and an overlay file system.
SquashFS is used as a read-only file system, and
OverlayFS is used to provide read–write capabilities.
This enables the configuration of a dynamic file
system during booting.

• Service Registration and Linux Initialization -
Required services are registered in the system, and
Linux starts to complete the booting process. This
includes reading the kernel parameters, configuring
systemd services, reporting the complete provisioning
status, and setting the hostname. The final steps of the
booting process involve dynamically configuring the
root file system and correctly mounting the base
system directories to establish a chroot environment.
The system is then executed to initialize it and start
the Linux.

C. Experimental Procedure
The experiment was divided into four stages: discovery,

commissioning (preinstallation environment), cluster
configuration, and deployment. Each stage is outlined as
follows. The experiment conducted in this study aimed to
verify the efficiency of KiERA-based operating system
deployment and was conducted in the following four stages:

• Discovery Stage
1) Board Management Controller (BMC) Network

Information Registration: BMC ID, password, IP address, and
port information are entered to configure the BMC network.
2) Target Node Scanning: The IPMI SoL scan feature is used
to scan the entire BMC network, and the target nodes are
temporarily registered. During this process, all temporarily
registered nodes can be controlled by IPMI.

• Commissioning (Preinstallation Environment)
Stage

1) Target node commissioning: Pre-boot eXecution
Environment (PXE) boot settings were modified, and reboot
commands were executed to initiate the commissioning
process. 2) Hardware Information Collection and Registration:
Through the commissioning process, hardware information
such as the CPU, memory, storage devices, GPUs, and other
PCIe devices for each node were collected and registered in
the database.

• Cluster Configuration Stage
1) Cluster Creation: The cluster name, group name, number of
nodes per rack, and node name prefix were entered. The target
and head nodes were selected for inclusion in the cluster. 2)
SSH Key Management: New SSH keys were generated or

119

existing keys were registered. 3) Network Configuration: Both
Ethernet and OPA networks were collectively configured. For
the cluster network configuration, when the initial IP address
is entered, the remaining nodes are automatically assigned IP
addresses sequentially.

• Deployment Stage
Image Preparation: We prepared the rootfs based on the

RHEL 7.9 BCM-specific image, the modified official initrd,
and the kernel. 2) Image Registration and Deployment: The
prepared image files were registered in KiERA, and
deployment was performed using the designated image.
During this stage, the rootfs image compressed in SquashFS
format was used, and high-speed transmission was facilitated
through the OPA network.

IV. RESULT AND ANALYSIS
The deployment of the operating system to 169 computing

nodes using KiERA revealed differences in the download
times of the initrd and rootfs files as well as the overall
deployment completion time for each node. In Fig. 3, the X-
axis represents the node ID, and the Y-axis illustrates the
download time. The results indicated that most nodes
completed the initrd download within approximately 185 to
400 s. However, a few nodes experienced network bottlenecks,
resulting in download times exceeding 450 s. This
phenomenon highlights the bandwidth limitations of the
Ethernet network when using the grub bootloader to download
the initrd, and suggests that simultaneous deployment is
feasible for up to 165 nodes. As illustrated in Fig. 4, the rootfs
download commenced after the initrd download was
completed. Approximately 14 nodes completed the rootfs
download within 10 s, whereas the download time gradually
increased to approximately 130 s for the 100th node. However,
for nodes beyond the 100th node, the download time increased
sharply, with some nodes requiring up to 800 s. This finding
indicates a bandwidth limitation in the OPA network, where
simultaneous deployment is optimal for up to 100 nodes. Fig.
5 illustrates the total deployment completion time, which
combines the initrd and rootfs download times. The total
deployment time ranged from 189 s to 1,217 s, with the rootfs
download time having the most significant impact on the
overall completion time. When 100 nodes were deployed
simultaneously, the average deployment time was
approximately 430 s (7 min and 10 s).

Based on these experimental results, it is estimated that
KiERA can simultaneously deploy up to 13,000 computing

nodes in a single deployment cycle (approximately 430 s) if
130 relay servers are used. However, this is a theoretical
estimate, and further verification in large-scale supercomputer
environments is required.

V. CONCLUSION AND FUTURE WORK
In this study, we proposed a method for deploying

operating systems in supercomputers using KiERA and
conducted a performance comparison with the existing BCM
system. The results showed that KiERA completed operating
system deployment within an average of 7 min and 10 s for
169 nodes, demonstrating a significantly improved
deployment efficiency compared with the BCM-based
approach. When deploying more than 100 nodes
simultaneously, network bottlenecks occur, causing a sharp
increase in the deployment time. This issue can be attributed
to the bandwidth limitations of OPA networks, necessitating
further research to address this limitation. Additionally, the
study suggested the potential for KiERA to deploy up to
13,000 nodes simultaneously, which can significantly enhance
the operating system deployment efficiency in large-scale
supercomputer environments.

Future research will focus on optimizing KiERA
performance in large-scale supercomputer environments and
exploring solutions to mitigate OPA network bottlenecks.
Through these efforts, KiERA is expected to contribute to
improving the operational efficiency of supercomputers, both
domestically and internationally.

ACKNOWLEDGMENT
This research was supported by Korea Institute of Science

and Technology Information (KISTI). (No. (KISTI)K24-L2-
M1-C6, (NTIS)2710018524)

REFERENCES
[1] D. A. Reed and J. Dongarra, 'Reinventing high performance computing:

Challenges and opportunities,' J. High Perform. Comput., vol. 12, no.
1, pp. 1–22, 2023.

[2] R. Riesen, B. Gerofi, Y. Ishikawa, and R. W. Wisniewski, "Operating
systems for supercomputers and high performance computing,"
SpringerLink, vol. 1, pp. 1–12, 2018.

[3] Y. Kodama, K. Watanabe, K. Suzuki, and K. Masui, "Bright Cluster
Manager: Powerful cluster provisioning," in Proc. ACM/IEEE Int.
Conf. High Perform. Comput., 2020, pp. 123–132.

Fig. 3. Initrd download time per node

Fig. 4. Rootfs download time per node

Fig. 5. Deployment completion time per node
Node ID Node ID Node ID

Ti
m

e
(S

ec
on

ds
)

Ti
m

e
(S

ec
on

ds
)

Ti
m

e
(S

ec
on

ds
)

120

[4] S. Rho, J. Ryu, S. Kim, K. Oh, K. Moon, and M. Yoo, "A study on the
technology for configuring online heterogeneous clusters using a
remote management platform," in Proc. 2023 Korea Inf. Sci. Soc. Conf.,
2023, pp. 31–33.

[5] Canonical Ltd., Canonical MaaS: Bare metal as a service, Canonical
Whitepaper, 2020.

[6] Korea Institute of Science and Technology Information, Nurion User
Manual, 2018.

[7] J. Browning, B. Winkler, R. Brightwell, M. Levenhagen, L. Archer,
and A. Rodrigues, "Intel Omni-Path Architecture: Unveiling the secrets
of the next generation InfiniBand," Hot Chips, vol. 30, 2018.

121

