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Abstract—The traditional topology-based metrics for assessing
node criticality may fall short in highly heterogeneous multilayer
networks. This work introduces a novel modeling framework that
incorporates both function and topology to effectively measure
node criticality. The framework is applied to the State of
Kansas’ transportation network as a practical example of an
infrastructure network, identifying the most critical nodes under
various operating load conditions. The findings reveal, among
other insights, a significant rise in an adversary’s success rate
when targeting the most critical nodes rather than a random set
of nodes.

Index Terms—Self-Healing Cyber-Physical Systems, Trans-
portation Networks, Cascading Failure, Node Criticality.

I. INTRODUCTION

Today’s interconnected infrastructure networks are highly
heterogeneous and complex systems that rely on advanced
technology and integration across various sectors. Therefore,
when studying network resilience, assessing the criticality of
a node cannot be based solely on its topology; the node’s
function must also be considered. However, the sheer com-
plexity of modern infrastructure networks, with their numerous
components and subsystems, makes this task challenging.
In particular, creating accurate models that capture the be-
havior of interconnected networks under stress is difficult.
Additionally, large-scale simulations of such networks can be
computationally intensive and require significant resources.
Thus, it is crucial to introduce simple models of real-life
networks and develop scalable frameworks to study them.

With this in mind, this work aims to address the following
questions:

« How can we assess the most critical nodes in a highly
heterogeneous network?

« How can we devise a flexible framework that captures
topology, function, and temporality?

There is a vast body of literature on node criticality (see, for
example, [1]-[13]). However, most existing work either limits
the criticality analysis solely to the topological aspect or does
not adequately capture node function in assessing criticality.
We propose a framework that utilizes decoupled function
graphs for studying interdependent networks. This framework
is scalable to large networks and can be applied to multiple

This material is based upon work supported by the National Science
Foundation under Award No. OIA-2148878 and matching support from the
State of Kansas through the Kansas Board of Regent.

979-8-3315-0694-0/25/$31.00 ©2025 IEEE

layers of interconnected networks, including structures where
one network can help recover the damaged nodes in another.
As a proof of concept, we apply this framework to a simple
model of a real-life interconnected transportation network.

The rest of this paper is organized as follows. Section
IT outlines the proposed framework. Section III describes
the models of the network, contagion, and healing (node
recovery), and defines a metric for resilience. Section IV
provides the numerical results and insights derived from them.
Finally, Section V concludes the paper.

II. PROPOSED FRAMEWORK

We propose to represent each network function as a homo-
geneous “function graph” and then use graphical models to
overlay multiple layers of such graphs. This approach results in
a multi-layer graph, which is well-suited for applying powerful
inference algorithms such as message passing to analyze the
dynamics and steady state of the entire model.

To illustrate the proposed “network decomposition,” con-
sider the example in Fig. 1(a), which presents a toy network
of 10 nodes. The interaction between two nodes can be of
two types: Type A and/or Type B. A Type A interaction is
represented by a blue link between two nodes, while a Type
B interaction is shown by a red link. A pair of nodes in the
network can be connected through one or both types of links.

In Fig. 1(b), we show a “decomposed” equivalent of the
toy network into two interconnected homogeneous function
graphs. The overlay network (square nodes) captures only the
Type A links, whereas the underlay network (circle nodes)
captures only the Type B interactions. For any node in the
toy network of Fig. 1(a), there is a corresponding node in the
overlay network and one in the underlay network in Fig. 1(b),
connected by a dashed line. The functionality of each node is
modeled mathematically as o = f(i), where o and 4 are the
output and input vectors, respectively.

III. MODELS, METHODS, AND METRICS

The proposed framework is applied to the transportation
network of my home state of Kansas, which includes a
combination of state and interstate highways, as well as local
and international airports. We begin by developing a model
of this network and then derive the corresponding layers of
function graphs for both the highway and air traffic networks.
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Fig. 1: Example of decomposition of a network into two function graphs: (a) a toy network with two types of links, blue and
red, (b) the equivalent decomposed version of the toy network into two interconnected homogonous layers.
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Fig. 2: The Kansas road map shows the state’s major roads and highways as well as its counties and cities [14].

Traffic data for each network was collected and utilized to
derive models of the operational functions for each node type.

A. Modeling Kansas’ Road Network

Fig. 2 depicts the Kansas road map [14]. To simplify the
presentation of results, we considered only 19 cities and
towns with populations of approximately 22,000 or more. The
resulting simplified road network connecting these major cities
is shown in Fig. 3, which includes 46 edges. Each edge is
assigned a unique ID number from 0 to 45 to facilitate the
explanation of numerical results later.

It’s important to note that in Fig. 2, any two cities, X and
Y, might be connected through multiple routes. However, for
their nodes to be connected by an edge in the graph of Fig.
3, the route connecting them must not have been used to
connect X or Y to another city, Z. In other words, we are
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interested in the network’s resiliency and only connect two
cities if an independent route exists between them that would
remain viable if other routes fail. Therefore, “reachability” is
our primary concern.

We assume that, in the absence of disturbances, each road
operates under a normal load that is less than its capacity.
Formally, a road can handle up to (1 + «) times its normal
load, where o > 0 is referred to as the “overhead parameter.”
When a road reaches this maximum allowed traffic load, it
is considered to be operating at its “capacity.” If a road is
subjected to a load higher than its capacity, it will continue
operating at its capacity, distributing the excess load to its
neighboring roads, which are represented in Fig. 3 by edges
adjacent to both ends of the road. For instance, the neighboring
roads to road 1 include roads O, 3, 2, 5, 4, and 11.

We assume that an interstate or toll road has twice the capac-
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Fig. 3: A simplified network model of the Kansas road map connecting the major centers of population. Each road is assigned
an ID. Interstate and toll roads are assumed to have twice the capacity of other roads and are shown by thick green edges.

ity of a US highway, state road, or other road
were chosen for simplicity; any two numbe
relative traffic loads of the routes would suffic
interstate and toll roads are represented in Fig.
edges, while other roads are depicted by thir

It is important to note that, for the purpo
we did not consider the length of the routes.
the edges between the nodes in Fig. 3 do not
attribute. Extending the proposed framework
length and other attributes would be an intere
future research.

B. Modeling Kansas Air Travel Network

Kansas is served by two major airports, !
Kansas City MCI. In addition, there are five m
as “commercial” by FAA that can serve small
planes [15]. Overall, these seven airports are
For simplicity, we assumed that the air traf
complete graph where travel between all air
if the airports are operational.

C. Coupled Kansas Air-Ground Transportation Network

By overlaying the air traffic network of Fig. 4 on the
road network of Fig. 3, we obtain a coupled air-ground
transportation network for Kansas, as presented in Fig. 5.
In this network, each airport, except Kansas City MCI, is
connected to its corresponding city. MCI, situated between
Kansas City and Leavenworth, serves both cities.

D. Initial Disturbance, Contagion, and Resilience

The resilience of a transport system refers to its ability to
resume operations at a level similar to that before a disruption
occurred. The less disruption in terms of capacity and fluidity,
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Fig. 4: A simplified model of the Kansas air traffic network.

and the quicker a system resumes normal operations, the
higher its resilience. Here, we outline our models for initial
disturbance, contagion within the networks, healing, and the
resilience metric. Our methodology can be extended to a wide
range of models.

1) Initial Attack and the Resulting Contagion:

e Focus on Road Network Damage: We assume the
adversary has the resources to damage 5 out of the 46
roads shown in Fig. 2.

o Traffic Redistribution: When a road is hit, its traffic
load must be picked up by its neighboring roads, with
the load distributed equally among them.

« Road Stress: If a road reaches its capacity, it is con-
sidered to be under “stress.” In this state, any unwanted
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Fig. 5: A model of the coupled Kansas air-ground transportation network.

event, such as an accident, will cause the road to go out
of service.

Overloaded Roads: If a road becomes overloaded due to
the burden of the load from a damaged neighboring road,
it will continue operating at its capacity, distributing the
extra load to its neighbors.

Contagion Limitation: This study does not consider
contagion of failures from the road network to the air
network, nor does it consider contagion within the air
network.

2) Healing:

« Role of Airports: Airports are used to heal the road
network by bringing in critical units and supplies to
sustain a city and repair its damaged adjacent roads, if
any.

Road Healing Time: If a damaged road is adjacent to a
city served by an airport, it is considered to be “served”
by an airport. A damaged road served by an airport will
heal in 5 time units; otherwise, it will heal in 10 time
units. A unit of time is defined as the time taken for load
redistribution between a road and its neighbors. These
numbers (5 and 10) are chosen for simulation perspective
and do not alter the intuition provided by the analysis and
results.

3) Resilience: We consider two factors for network re-
silience:
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« Recovery Time: The time needed for the network to fully
recover.

o Stress Size: The extent of stress in the network, defined
as the total number of damaged and stressed roads due
to the attack.

The adversary’s goal is to select five target roads to max-
imize stress size and recovery time. Hence, the adversary’s
success metric for a particular attack is the product of stress
size and recovery time. The minimum value of this product
would theoretically be 5 x 5 = 25 (if only the initial 5 nodes
are damaged and it takes only 5 time units to fix them). We
define the adversary’s success metric .S as:

__ stress size X recovery time
25
The adversary aims to maximize S. We define the network’s
resilience R as: 1
~ max(S)

Since S > 1, R will always be less than or equal to 1.

I'V. NUMERICAL RESULTS

We applied the proposed framework to the model of Fig. 5,
under the disturbance, contagion, and healing model explained
in the previous section. Fig. 6 shows the numerical results
obtained for various values of the overhead parameter, namely
a = 0.5, 1, 1.5, and 2. For each value, we presented the
following:



Overhead Highest-Valu ax Recovery Max Success | Random Attack’s | Network
Parameter, a | Targets Time Metric Success Metric | Resilience

{1,3,12,17,30} {1,3,12,17,30,0,5,11, 13,15, 7.6 2.40 0.13

16,4, 8, 14, 22, 24, 25, 2, 10}
— {1,3,5,12,14} 10 {1,3,5,12,14,2,4,11,13,8,15,16} 4.8 1.93 0.2
“ {1,3,4,5,10} 10 {1,3,4,5,10,0,2, 11} 3.2 1.91 0.31
— {0,1,2,3,5} 10 {0,1,2,3,5,4, 11} 2.8 1.91 0.36

Fig. 6: Numerical results of applying the developed framework to the Kansas transport network.

(a) Highest value targets: The initial set of 5 damaged roads
yielding the maximum success metric for the adversary,
i.e., the highest value targets.

(b) Max recovery time: The recovery time resulting from
the initial damage in (a).

(c) Max stress set: The set of damaged and stressed roads
resulting from the attack in (a).

(d) Max success metric: The success metric obtained from
the attack in (a), representing the maximum possible
success metric achieved by the adversary.

(e) Random attack’s success metric: The success metric
achieved by the adversary if, instead of (a), a random set
of 5 roads was attacked.

(f) Network resilience: Network resilience as defined in the
previous section.

Several observations can be made from the results shown in
Fig. 6, among which the following are particularly interesting:

e Roads 1, 3, and 5 are the most common in all cases,
distinguishing them as the highest value targets.

« The difference in the adversary’s success metric between
a carefully chosen target set and a randomly chosen one
is significant. This difference grows larger as o becomes
smaller, i.e., as roads operate closer to their capacity. This
highlights the importance and impact of strategic target
selection.

V. CONCLUSION

We employed the concept of function graphs to model
interdependent heterogeneous networks, using this approach
to study network resilience. Specifically, we developed a
functional model of Kansas’ transportation infrastructure. Our
method and metric allow us to rank nodes by their criticality,
identify the highest-value assets within the network, and
measure an adversary’s success in targeting different sets of
nodes. For future work, it would be intriguing to integrate
temporality into the proposed framework.
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