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Abstract—Random walks on graphs have wide-ranging appli-
cations, including target node search on graphs and structural
exploration of graphs. In recent years, analyses have been
conducted not only on random walks over static graphs (where
the topology does not evolve during the random walk) but also on
dynamic graphs (where the topology evolves during the random
walk). It has been shown that the behavior of a random walk
on a random evolving graph is similar to that of a random walk
on a static graph in that the stationary distribution remains
unchanged over time. However, the impact of the dynamics (rate
of change) of a dynamic graph on the characteristics of random
walks, particularly the hitting time, has not been fully investi-
gated. In this paper, we aim to quantitatively elucidate the search
and exploration efficiency of random walks on various dynamic
graphs. Specifically, we analyze the properties of random walks
on a random evolving graph, and examine the impact of graph
dynamics on search and exploration efficiency. As a consequence,
we show that as the rate of change of the graph increases, the
hitting time of the random walk operating on it decreases rapidly.

Index Terms—Random Walk, Hitting Time, Cover Time,
Evolving Graph, Dynamic Graph

1. INTRODUCTION

A random walk on a graph has wide-ranging applications,
including target node search and structural exploration of
graphs. In recent years, analyses have been conducted not
only on random walks over static graphs (where the topology
does not change during the random walk) but also on dy-
namic graphs (where the topology changes during the random
walk) [1-3]. As many real-world networks evolve over time,
there has been growing interest in random walks on dynamic
graphs.

It has been shown that the behavior of random walks on
a random evolving graph, in which the stationary distribution
does not change over time, is similar to that on a static graph.
Additionally, analyses of the properties of random walks on
dynamic graphs have been conducted. For instance, it has been
shown that the mixing time and hitting time on a dynamic
random regular graph are O(n’) [4]. However, the impact
of the dynamics (rate of change) of a dynamic graph on
the characteristics of random walks, particularly the hitting
time, has not been thoroughly investigated. Furthermore, it
is necessary to evaluate, from a quantitative perspective, how
much the search and exploration efficiency of random walks
in dynamic graphs improves compared to static graphs.

This study aims to answer the following research questions.

« How does the rate of change in dynamic graphs affect the
hitting time of random walks?
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« How does the search and exploration efficiency of random
walks vary depending on the type of dynamic graph?
To what extent can the hitting time and cover time of
random walks in dynamic random evolving graphs be
approximated accurately using random regular graphs?
How does the search and exploration efficiency of random
walks differ between dynamic and static graphs as the
graph size and density vary?

This study aims to quantitatively elucidate the search and
exploration efficiency of random walks on various dynamic
graphs. Specifically, we analytically and through simulations
investigate the properties of random walks on the represen-
tative dynamic graph, namely, the random evolving graph,
and examine the impact of graph dynamics on search and
exploration efficiency.

The main contributions of this paper are summarized as
follows.

o The impact of the rate of change on the hitting time of
random walks in dynamic graphs has been quantitatively
clarified.

o The hitting time of random walks in dynamic random
evolving graphs has been approximated using random
regular graphs.

The structure of this paper is as follows. Section II introduces
random walks on dynamic graphs. In Section III, we first
clarify the differences in the characteristics of random walks
on dynamic and static graphs through simulations, and then
clarify the impact of graph dynamics on the characteristics of
random walk. Section IV analytically derives the mean hitting
time based on the rate of change of the graph. In Section
V, the validity of our approximate analysis is examined.
Finally, Section VI summarizes this paper and discusses the
conclusions.

II. RanpoM WALKS oN A Dynamic GRAPHS

In this study, the dynamic graph under consideration is an
unweighted, undirected graph G, = (V,, E,) whose topology
changes at each slot n > 1. Here, the set of nodes remains
constant (i.e., Vi =V, = V3 =...).

The graph G, represents the graph at a specific time n. An
example of a dynamic graph is shown in Fig. 1. G, has the
vertex set V, and the edge set E,. Furthermore, the condition
Vo = Vi = V,... holds, indicating that the vertex sets are
identical at different times.

In a dynamic graph, the cover time of a discrete-time
random walk is the time it takes for an agent, starting from an
initial node on the graph G, at slots n = 0, to transition over
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(@) Gy =(V1,Ep)

(¢) Gz =(V3,E3)

Fig. 1. Example of a dynamic graph (rate A = 1, slots n = 1,2, 3, node set
Vi=V2=V3)

the graph G, at slots n > 0 and visit all other nodes at least
once, excluding the starting node.

In a dynamic graph, the hitting time of a discrete-time
random walk is the time it takes for an agent, starting from an
initial node on the graph G, at slot n = 1, to transition over
the graph G, at slot n and reach the target node for the first
time.

III. EXPERIMENT

A. Characteristics of Random Walks on Static and Dynamic
Graphs

In the following, we analyze the impact of graph dynamics
on the exploration efficiency of a simple random walk (SRW)
across graphs with different topological structures.

We measured the average hitting time and cover time of a
simple random walk on both static and dynamic graphs gener-
ated using several network generation models. To generate the
graphs, we used 10 different network generation models, pro-
ducing random regular graphs, BA (Barabdsi—Albert) graphs,
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Fig. 2. Differences in the characteristics of random walks on dynamic and
static graphs n = 100

randomized BA graphs, ring graphs, tree graphs, binary tree
graphs, lattice graphs, 3-regular graphs, 4-regular graphs, DB
(Degree-Bounded) graphs, and Li-Maini graphs. Using each
network generation model, we generated 1,000 graphs. One
of these graphs was designated as the static graph G, and a
dynamic graph G, was created by randomly switching among
the 1,000 graphs at each step. For both a given static graph and
a dynamic graph, we measured the hitting time and cover time
of a simple random walk, where an agent initiated movement
from a randomly selected starting node s. In both the static
and dynamic graphs, we performed 10,000 trials of the simple
random walk starting from node s to calculate the average and
the 95% confidence intervals of the hitting time and the cover
time.

Fig. 2 shows two types of exploration efficiency (average
hitting time and cover time) of a simple random walks on 10
types of static graphs and their corresponding dynamic graphs.
From these results, it is evident that, for all graph types, the
exploration efficiency of a simple random walk on dynamic
graphs is significantly better than that on static graphs. It is
also observed that the average hitting time on dynamic graphs
approximately equals the number of nodes, which is 100.
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Fig. 3. Relationship between the Rate of A and Hitting Time

B. Impact of Graph Dynamics on the Characteristics of Ran-
dom Walks

We analyze the impact of the rate of change A in random
evolving graphs on the hitting time and cover time of random
walks across graphs with different topological structures. To
measure the average hitting time and cover time of a simple
random walks on static and dynamic graphs, we generated
graphs with 100 nodes using several network generation
models.

Specifically, we generated 10 types of graphs: random
regular graphs, BA (Barab’asi—Albert) graphs, randomized
BA graphs, ring graphs, tree graphs, binary tree graphs,
lattice graphs, 3-regular graphs, 4-regular graphs, DB (Degree-
Bounded) graphs, and Li-Maini graphs. For each model, 1,000
graphs were generated, and at each step, the graph was
switched with a probability determined by the rate of change
A

On the 10 types of generated graphs, the rate of change
A was set to values ranging from O to 1, and 10,000 trials
of a simple random walks were conducted starting from each
node. Through this experiment, the average hitting time and
cover time, along with the 95% confidence intervals, were
determined.

The results for the hitting time and cover time of a simple
random walk on evolving graphs generated with 10 types
of network generation models are shown in Fig. 3 and 4,
respectively. From these results, it was confirmed that as the
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Fig. 4. Relationship between the Rate of A and Cover Time

rate of change A of the graph increases, the hitting time
and cover time of the random walk decrease rapidly. It was
found that, regardless of the network generation model of the
evolving graph, the hitting time converges to nearly the same
value across all network generation models when the rate of
change 1 = 1 (i.e., the state in which the graph undergoes
the most rapid changes). Similarly, the cover time was also
shown to exhibit nearly identical values irrespective of the
network generation model. Furthermore, it was revealed that
the hitting time under these conditions is approximately equal
to the number of nodes in the graph.

IV. ANALysIS

Let the rate of change of a random evolving graph G, be
denoted by A4, its average degree by k, and the n-th graph in
G by G, for n > 1. Since G is a random evolving graph, all
G, share the same probability distribution, and G, and G4,
are mutually independent.

When the rate of change A > 0, each G, in the random
evolving graph is independent of one another, allowing an
agent traversing the random evolving graph to perceive the
graph structure as a random regular graph with a certain
degree.

Here, let the effective average degree observed by an agent
over L slots be k. Given that the average degree of the graph
G, is k, the effective average degree when the graph does not
change over L slots is k. Similarly, if the graph changes i times
over L slots, the effective average degree is k(i + 1).
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Fig. 5. Relationship between the rate of change A in a random evolving graph
and the average hitting time.

The probability p; that the graph changes i times over L

slots is
L .
pi = ( .)(1 - pan M
i
Thus, the apparent degree k observed by the agent is
L
k= Zk(l +i)pi. 2)
i=0
Expanding this equation, we have
L L
k=k ) (L+| | -2 3
X z)( l.)( ) 3)

i=0
Here, the degree when the graph does not change over L

slots is k, and when it changes, the degree is k(1+i). Therefore,
the average degree can be approximated as follows.

k~ k(l + /l)
L
If we set the observation period for the apparent degree k
toL=1/A, then k =2kA.

“)

k = 2kA ©)

Therefore, if we denote the expected hitting time in a ran-
dom regular graph with degree d as H(d), the expected hitting
time H in the random evolving graph G is approximately given
by

H =~ H(k)=HQ2kJ) (6)

V. NuMERICAL EXAMPLES

Through several numerical examples, we analyze the impact
of the rate of change A in a random evolving graph on the
hitting time of a random walk.

We calculate the expected hitting time based on Eq. (6)
for varying rates of change A in a random evolving graph G,
where each G, constituting G is a random network with 100
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nodes generated by the ER model (Fig. 5). The figure shows
results when the average degree of the random evolving graph
G (i.e., the average degree of each graph G, comprising it) is
varied to 2.5, 3, and 4. To verify the validity of the analytical
results, the average hitting times measured through simulation
experiments under the same conditions are also presented.
In the simulation, a random network with 100 nodes was
generated using the ER model. The hitting time was measured
for a simple random walk initiated from a randomly selected
starting node within the random network. Additionally, the
average hitting time for a simple random walk was obtained
by performing 1,000 trials from the starting node.

These results show that as the rate of change A of the graph
increases, the hitting time of the random walk operating on it
decreases rapidly. Additionally, as the rate of change becomes
larger, the hitting time asymptotically approaches the number
of nodes in the graph. It is also confirmed that the analytical
results generally agree with the simulation results.

VI. CONCLUSIONS

In this study, we had analyzed how the rate of change in
dynamic graphs affects the characteristics of random walks,
particularly the hitting time. In the experiments, we had
measured the hitting time and cover time of random walks on
both static and dynamic evolving graphs generated using 10
different network generation models with various topologies.
The results show that, across the network generation models,
the exploration efficiency of random walks on dynamic graphs
is higher than that on static graphs, with the average hitting
time on dynamic graphs tending to be nearly equal to the
number of nodes. Additionally, it is confirmed that as the rate
of change A increases, both the hitting time and cover time
decrease rapidly. Specifically, when the rate of change reaches
its maximum, the hitting time and cover time converge to
similar values, with the hitting time becoming approximately
equal to the number of nodes.

Furthermore, it has been observed that analytical predictions
of the hitting time for random walks on dynamic graphs with
varying rates of change A are consistent with the simulation
results. This indicates a close relationship between the char-
acteristics of random walks on dynamic graphs and the rate
of change of the graph.
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