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Abstract—The escalation of worldwide conflicts and accessibil-
ity of unmanned aerial vehicles (UAVs) have led to the increase
of various security concerns. To implement effective protective
measures against unauthorized drones, it is crucial to blindly
estimate the generation polynomial of the frequency hopping
spread spectrum (FHSS) signals, which are commonly used in
UAVs. This paper presents a robust algorithm for the blind
estimation of generation polynomials with partial observation of
the signal hopping period, utilizing time frequency images (TFI)
and unique preprocessing methods to accurately and efficiently
extract the hopping pattern. The TFI is segmented into each
hopping region, which undertakes noise reduction via temporal
marginalization independently. Subsequently, the noise-reduced
image is standardized, clipped along the frequency axis for
pattern enhancement. Then, the analysis of the preprocessed
image allows for the identification of the hopping pattern, which
can be used to reconstruct the generation polynomial by simple
linear operations. Simulation results show that the proposed
algorithm reduces the required signal duration for identifying
the generation polynomial and enhances estimation accuracy.

Index Terms—frequency hopping spread spectrum, time-
frequency image, blind estimation

I. INTRODUCTION

In non-cooperative contexts, such as spectrum surveillance
and cognitive radio systems, the receiver should operate with-
out any prior information about the transmitter. To recover
the received signal and retrieve the original information,
the receiver must autonomously estimate key communication
parameters. These include determining the modulation scheme
[1], [2], identifying the interleaver pattern [3], [4], recognizing
the scrambler configuration [5], [6], detecting the spreading
sequence [7], [8], and so on. Particularly in frequency hopping
spread spectrum (FHSS) systems, estimating the generation
polynomial and the resulting hopping pattern is crucial, as
these elements define the frequency transitions and directly
impact the effectiveness of signal interception and analysis.

This need for blind estimation becomes even more pressing
in the context of growing security concerns surrounding the
use of unmanned aerial vehicles (UAVs). With the escalation
of numerous global conflicts in the recent decade, the use
of UAVs have increased concerns over privacy violations,
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explosive attacks against civilians, smuggling, and unautho-
rized surveillance of restricted sites [9]. As UAV technology
becomes more accessible in the commercial market, the threat
posed by these devices in malicious hands has been increas-
ingly noted. To address this issue, because UAVs often employ
FHSS systems, various jamming techniques targeting FHSS
have been proposed as countermeasures against unauthorized
drones. A wideband jammer disrupts signals by emitting high-
energy interference across entire frequency bands, effectively
overwhelming the target signal, but it faces the limitation
of excessive energy usage. On the other hand, a random
jammer degrades the signal by rapidly hopping across multiple
frequencies, but its effectiveness can be reduced if the hopping
pattern is unpredictable or too fast. Additionally, a reactive
jammer detects the frequencies being used by the target signal
and interferes on those frequencies to disrupt communication,
yet it requires high reaction speeds and can be costly to
implement [10] . Limitations of the jamming process can be
effectively overcome by estimating the generation polynomial
of the FHSS signal, as exposing the hopping pattern can
drastically reduce the cost of jamming to effectively disrupt
communication between the UAV and the controller [11] .
Sequential estimators, which estimate parameters of a system
by processing data points incrementally as they are observed,
can, in theory, contribute to the estimation of the hopping pat-
tern of the FHSS system, but they face significant challenges,
especially in noisy environments. However, by utilizing TFI
and advanced image processing techniques, it is possible to
adopt a similar estimation mechanism that is more robust in
such conditions.

Conventional studies generally utilize time-frequency image
(TFD) to estimate the hopping pattern, focusing on captur-
ing the whole hopping period of the FHSS signal [12]-
[14]. Various statistical methods were adopted to extract
each hopping frequency to reconstruct the hopping pattern.
Reference [12] utilized smooth windowed Wigner-Ville dis-
tribution (SWWVD) and the instantaneous frequency moment
method to estimate the hopping frequencies and the hopping
interval. Reference [13] on the other hand, based its estimation
on the combination of short-time Fourier transform (STFT)
and smoothed pseudo-Wigner-Ville distribution (SPWVD) to
estimate the duration, center instant and frequency parameters
of each hop for synchronous and asynchronous environments.
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Additionally, reference [14] utilized simple STFT to estimate
the next hopping frequency with a limited observation window
and deep learning models.

While previous works have proved the effectiveness and ver-
satility of TFIs in the blind estimation of FHSS system, there
is still room for further improvement in both the image pre-
processing and analysis methods. This paper presents a robust
algorithm for the blind estimation of generation polynomials
with partial observation of the signal hopping period, utilizing
TFIs and unique preprocessing methods to accurately and
efficiently extract the hopping pattern. The TFI is segmented
into each hopping region, which undertakes noise reduction
via temporal marginalization independently. Subsequently, the
noise-reduced image is standardized and clipped along the fre-
quency axis for pattern enhancement. Then, the analysis of the
preprocessed image allows for the identification of the hopping
pattern, which can be used to reconstruct the generation poly-
nomial by simple linear operations. The proposed algorithm
notably reduces the required signal duration for identifying the
generation polynomial, making it more efficient and suitable
for real-time applications. Furthermore, simulation shows that
it enhances estimation accuracy, ensuring robust and reliable
detection of unauthorized UAVs.

The structure of this paper is as follows; Section II explains
the FHSS system model. Section III describes the TFI pre-
processing method and the generation polynomial estimation
algorithm. Section IV presents the the simulation results.
Finally, Section V provides the conclusion of this paper.

II. SYSTEM MODEL

The FHSS system model for the target UAV is comprised
of a pseudo-noise (PN) sequence generator, a frequency syn-
thesizer and a FSK modulator. Figure 1. shows the FHSS
communication system diagram.
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Fig. 1: Block diagram of FHSS system

The FH pattern determines the frequency levels of the FHSS
signal. It is generated by a generation polynomial, denoted
as P(z) = 1+ cixz + -+ + ¢,z™. The coefficient matrix
C = [01,02, .. .,cn] determines the linear feedback shift
register (LFSR) and the binary state of the registers for each
shift determines the hopping pattern, denoted as m(i). The
sequence is then mapped to a frequency hopping pattern by
multiplying m(i) by a fixed frequency fpuse. The resulting

frequency level for the i-th step in the hopping pattern is
expressed as follows:

fh(l) = fbase X m(l) (1)

This mapping directly ties the hopping pattern to the underly-
ing m-sequence, providing a pseudo-random yet deterministic
sequence of frequencies for the FHSS system. The binary
data is modulated by FSK, and subsequently, this modulated
signal is combined with a series of frequency hopping levels
to generate a FHSS signal. If the data bit is *1°, the signal
is modulated with a positive frequency shift; if the bit is *0’,
the signal is modulated with a negative frequency shift. This
results in a fully modulated FHSS signal, where each bit is
transmitted on a different frequency channel as determined by
the PN sequence.

The modulated signal s;[n] for the i-th bit is expressed as
follows:

si[n] = cos {27rfh,{(i mod L)+1} e — (2d; — 1)27rf1nTe} .

2
The data sequence is denoted as d; € {0,1}. The time
duration of one bit is represented by the time index n and the
sampling period 7, and the frequency of each hop is given by
{fnx}- L is the length of the frequency hopping sequence, and
Jr{(i mod L)+1} 18 the frequency selected from the hopping
pattern for the i-th bit. f; is the frequency shift for BFSK
modulation. The intercepted FHSS signal y[n] can be written
as:

yln] = s[n] + w(n], 3)

where w(n] is the additive white Gaussian noise introduced by
the channel.

III. ESTIMATION ALGORITHM

This section explains the proposed algorithm for the estima-
tion of FHSS generation polynomial by utilizing TFI. Figure
2 illustrates the block diagram of the proposed algorithm.
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Fig. 2: Block diagram of the estimation process



First, the received signal is processed to generate a TFI
which represents the frequency hops over time and is essential
for analyzing the hopping pattern. Subsequently, the TFI
undergoes advanced image preprocessing techniques, such
as noise reduction and pattern enhancement, to improve the
quality of the image. By analyzing the TFI, the sequence of
frequency levels and their timing are identified, enabling the
reconstruction of the generation polynomial.

A. Image Preprocessing

To begin the estimation process, a TFI is generated by STFT.
STFT is utilized due to its relatively low computational costs
[15]. STFT of the received signal y[n] is defined as follows:

mR+M-—1

D

k=mR

Dy = ylk] w[k — mR] exp (_j%lk> , @

’ M
where D, ,,, represents the STFT of y[k] at the frequency index
! and time index m; the function w[k] denotes the window
applied to the signal; and R indicates the number of samples
that overlap between consecutive time segments. To visualize
the STFT of the received radar signal, we convert D, ,,, into a
spectrogram by computing the square of the amplitude of the
STFT, expressed as Y} ., = |Dl7m\2.

The spectrogram is then normalized using min-max scaling
to ensure the values lie within the gray-scale range of [0,1]
and is resized by nearest-neighbor interpolation to unify signal
scale and TFI size for further processing. The normalization
is defined as follows:

}/lﬂn - IIliIl ()/l.,m)
L,m

Gl,m = (5)
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where G, is the converted gray-scale image. The resized
grayscale spectrogram is represented as [ (u, v). Here, u and v
represent the row and column index of the image, respectively.

Subsequently, to ensure accurate estimation, noise reduction
and pattern enhancement are considered for image preprocess-
ing techniques. For noise reduction, the process is performed
independently for each hop to focus on each frequency level
and its environment. As such, the image is segmented by
each hop duration and marginalized along the time axis. Let
It (u,v) represent the i-th segment of the image, defined as:

seg
Iz’ (U,U) — {I(U,U),

SE; .
€ 0, otherwise,

if v, <ov< Vi1

(6)

where v; is the boundary that defines the segment by hop
duration.

A marginalized vector from the segment provides informa-
tion about the frequency levels occupied by the FHSS signal.
The marginalized vector g; for the i-th segment is derived as

follows: _
gi =Y Iig(u,v). (7

Since the signal is concentrated in a limited range of frequency
levels, the marginalized vector g; will have higher values

in the signal frequency levels compared to the noise-only
frequencies. For noise reduction, each segment chg(u,v) is
processed by multiplying each column with its corresponding
value in the marginalized vector, denoted as follows:

Riee = diag(g;) X Iee- ®)

seg

Here, diag(g;) represents a diagonal matrix where the major
diagonal is filled with g;. The concatenation of each noise-
reduced segment R(u,v) exhibits pronounced reduction in
pixel values in the noise-only range compared to the signal
component range.

Finally, the noise-reduced image undergoes standardization
in the frequency axis and clipping under average pixel value to
enhance the hopping patterns. The standardization and clipping
process is given as follows:

S(u, U) _ R(/LL, U()I; Ho 7 9)
) S(u,v), if S(u,v) >0
Blu,v) = {0, if S(u,v) < 0. (10

Here, S(u,v) and E(u,v) denote the standardized and clipped
image, respectively. u,, denotes the mean and o, the variance
of the v-th column of R. This process accentuates the patterns
in R(u,v).

Figure 3 demonstrates that the processed image exhibits less
noise and an accentuated frequency hopping pattern compared
to the raw spectrogram.

(a) Raw spectrogram (b) Preprocessed image

Fig. 3: Comparison between preprocessed image and raw
spectrogram

B. Polynomial Estimation

The next step requires extracting the hopping frequency
levels through the analysis of each segment Efeg(u,v), to
estimate the generation polynomial. This process begins by
summing the columns of each hop duration segment, allowing
us to identify the frequency index with the highest value, as
shown in (11) and (12).

Mi(f) = ZE;’Cg(u,v) (11)

fiax = argmax M*(f) (12)



Here, M (f) represents the summed values of each frequency
column for the ¢-th segment. The frequency index correspond-
ing to the maximum of M*(f) is denoted as f.,.. From the
above process, the set { fn.x} containing frequency levels for
all segments is generated. To determine the spacing between
frequency levels, a recursive process is used to form difference
sets between adjacent elements until a set includes a zero.
Define {Af1} to be a set of all absolute differences between
adjacent elements of { fi.x}:

Afr = {| F5EY = Fax

Recursively, for each n > 2, define the set {Af,} as the
set of all differences between adjacent elements of the set
{Af,_1}. Continue this process until a set is reached where
{Afx} contains the element zero.

Once the sequence {Af,} reaches the termination point,
dmin 18 defined as the minimum non-zero element among all

the sets {Af1}, {Afa}, ..., {Af}.

(13)

:1§i<m}.

k
dmin = min U Afi \ {0}

i=1

(14)

The value d, is the estimation of fy, converted to column
index. As such, fl_. isis divided by dp, to estimate the value

max

of the m-sequence, as shown in (15).
i) = | |

The set of estimated me (i) represents the integer interpre-
tation of the binary state of the registers for each shift of the
LFSR. Given a known polynomial degree n, a linear equation
for estimating the coefficients of the generating polynomial
[16] can be constructed using n + 1 consecutive meg () as
follows:

15)

IC =0,

111 112 i1n
21 122 2n

I = . )
_inl inQ Z’nn (16)
c1 121
C2 131

C= , 0=
1 Cn i(n+1)1

Here, each row of I represents the binary form of meg(i)
and C represents the generation polynomial coefficient. By
the nature of the LFSR, the output O, = I(;41);. Finally, the
coefficients are estimated using matrix inversion if the matrix
I is non-singular: C = I-10O.

IV. ESTIMATION PERFORMANCE

In this section, we describe the various parameters for the
simulation data and present the estimation performance of
the proposed FHSS generation polynomial estimation under
various SNR conditions. The parameters used for the FHSS

signal generation are detailed in Table 1. The parameters
include a data rate of 1000 bits/s and a hopping rate of 1
hop/bit. The signals were sampled at a frequency of 1 MHz,
with a minimum hop frequency set at 10 KHz. The TFI
method used was the ‘pspectrum’ function, which is a type
of spectrogram generation method, and the generated images
were resized to a resolution of 400 x 400 pixels. For each
SNR value, the estimation process was repeated 10,000 times
to ensure statistical reliability.

TABLE I: Simulation parameters

Parameter Value
Data rate 1000 bits/s
Hopping rate 1 hop/bit
Sampling frequency 1 MHz
Minimum hop frequency 10 kHz
TFI method pspectrum
Image size 400 x 400 pixels
Estimation count 10000 count/SNR
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Fig. 4: Estimation accuracy of generation polynomial

We depict the comparative results of generation polynomial
estimation accuracy using the proposed algorithm on both raw
and preprocessed spectrogram images under varying signal
conditions in Figure 4. In the first set of simulations, illustrated
in Figure 4(a), the polynomial degree was set to n = 3, and



the signal-to-noise ratio (SNR) was varied between —15 dB
and —5 dB. This range was selected to replicate challenging
conditions with high noise levels. Despite these conditions,
preprocessing the spectrogram image led to a 3% improve-
ment in image quality compared to the raw spectrogram,
demonstrating the effectiveness of the preprocessing steps
in enhancing image clarity, which is crucial for accurate
polynomial estimation. Notably, the estimation was successful
with only 57% of the hopping period observed, highlighting
the algorithm’s efficiency and robustness even with partial
data.

In the second set of simulations, as illustrated in figure 4(a),
the polynomial degree was increased to n = 4, and the SNR
values were adjusted to range from —10 dB to O dB. This
adjustment reflects a scenario where the signal is stronger
relative to the noise, yet still presents a considerable chal-
lenge for accurate estimation. The results exhibit a significant
enhancement in estimation accuracy, with the preprocessed
image showing an improvement of over 12% compared to the
raw spectrogram. This considerable improvement highlights
the effectiveness of the preprocessing techniques applied,
which include noise removal, segmentation, and pattern en-
hancement. The preprocessing not only improves the visual
quality of the image but also enhances the algorithm’s ability
to detect and accurately estimate the underlying polynomial.
In this scenario, the estimation was accomplished by analyzing
only 33% of the entire hopping pattern, which is a substantial
reduction compared to the first simulation set. This reduction
in required observation time demonstrates the algorithm’s
increasing efficiency with higher polynomial degrees.

These simulation results collectively validate the proposed
algorithm’s capability to accurately estimate the generating
polynomial even when only a portion of the hopping period
is observed. The reduced requirement for signal duration
is particularly significant, as it suggests that the algorithm
can operate effectively in real-time applications where data
acquisition may be limited by time or other constraints. Fur-
thermore, the use of TFI combined with unique preprocessing
techniques, such as noise removal through segmentation and
pattern enhancement, plays a crucial role in the algorithm’s
success. These techniques not only improve the quality of
the images used for analysis but also significantly boost the
estimation accuracy compared to methods that rely on raw
spectrogram images. The robustness and flexibility of the
approach, demonstrated under various simulated conditions,
indicate that this algorithm is a dependable tool for estimating
the FHSS generating polynomial.

V. CONCLUSION

In this paper a robust algorithm for the blind estimation
of generation polynomials of FHSS with partial observation
of the signal hopping period and TFI utilization was pro-
posed. The TFI was segmented into each hopping region,
which undertakes noise reduction via temporal marginalization
independently. Subsequently, the noise-reduced image was
standardized, clipped along the frequency axis for pattern

enhancement. Then, the analysis of the preprocessed image
allowed for the identification of the hopping pattern, which
can be used to reconstruct the generation polynomial by simple
linear operations. It was demonstrated through simulations that
the proposed algorithm accurately estimates the generation
polynomial, even when only a portion of the hopping period is
observed, reducing estimation time significantly. Furthermore,
by utilizing unique preprocessing methods, it enhanced the
estimation accuracy compared to raw spectrogram image. The
approach performed well under various conditions, making it
a reliable tool for the estimation of the generation polynomial
of FHSS signals. Further research is needed to accurately
estimate the polynomial degree and signal bandwidth without
prior knowledge, making the algorithm more versatile.
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