

Sujoy Sinha Roy

s.sinharoy@cs.bham.ac.uk

Centre of Excellence in Cybersecurity, University of Birmingham, UK



## **Classical Diffie-Hellman Key Agreement**

Public info: Prime p and base g



Why is this secure?

## **Discrete Logarithm Problem**

Given x, g and p, compute the secret a such that

$$x = g^a \mod p$$

Latest record (Dec 2019) is 795-bit. [BGGHTZ'19] Using Intel Xeon Gold 6130 CPUs.

## Widely Used Public Key Algorithms

RSA cryptosystem (Integer factorization problem)

Elliptic curve cryptosystem (ECC) (Elliptic curve discrete logarithm problem)







## Death of public key cryptography???

most powerful supercomputers currently in existence, it will achieve what is known as "quantum supremacy". Google Quantum AI Lab <u>revealed</u> a new gate-based superconducting quantum computing chip called Bristlecone last week with a square array of 72 qubits (a portmanteau for quantum bits). They are going for quantum supremacy, but they may be a few qubits short.





#### Quantum Supremacy Using a Programmable Superconducting Processor

Wednesday, October 23, 2019

Posted by John Martinis, Chief Scientist Quantum Hardware and Sergio Boixo, Chief Scientist Quantum Computing Theory, Google Al Quantum

## **Post Quantum Public Key Cryptography**

## Existing quantum algorithms cannot solve

- Lattice-based cryptography
- 'Learning With Errors' (LWE) problem
- Multivariate cryptography
- Hash-based cryptography
- Code-based cryptography
- Supersingular elliptic curve isogeny cryptography

Given two linear equations with unknown x and y

$$3x + 4y = 26$$

$$2x + 3y = 19$$
or
$$\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 26 \\ 19 \end{bmatrix}$$

Find x and y.

## Solving system of linear equations

System of linear equations with unknown 5

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \\ \vdots \\ b_m \end{pmatrix}$$

Gaussian elimination solves s when number of equations  $m \ge n$ 

#### Solving system of linear equations with errors

Matrix A Vector **b**

$$\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}
\cdot
\begin{pmatrix}
s_1 \\
s_2 \\
\vdots \\
s_n
\end{pmatrix}
+
\begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_n \\
\vdots \\
e_m
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n \\
\vdots \\
b_m
\end{pmatrix}$$
mod q

- Search Learning With Errors (LWE) problem:
   Given (A, b) → computationally infeasible to solve (s, e)
- Decisional Learning With Errors (LWE) problem :
   Given (A, b) → hard to distinguish from random

## Diffie-Hellman styled Key Exchange based on LWE

#### Public matrix A



## FRODO: An example of LWE scheme

FRODO uses a 640-matrix dimension (100-bit security)

FRODO on ARM Cortex M4 @ 24 MHz

| Key gen | Encapsulation | Decapsulation |
|---------|---------------|---------------|
| 81 M    | 86 M          | 87 M          |

- Around 3.3 sec per operation
- Slow due to expensive matrix-vector multiplications

Can we improve the speed?

#### **Standard LWE**

$$\begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} * \begin{pmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} + \begin{pmatrix} e_0 \\ e_1 \\ e_2 \\ e_3 \end{pmatrix} \approx \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} \pmod{q}$$

Uniformly random matrix

## **Ring LWE**

$$\begin{pmatrix} a_0 & -a_3 & -a_2 & -a_1 \\ a_1 & a_0 & -a_3 & -a_2 \\ a_2 & a_1 & a_0 & -a_3 \\ a_3 & a_2 & a_1 & a_0 \end{pmatrix} * \begin{pmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} + \begin{pmatrix} e_0 \\ e_1 \\ e_2 \\ e_3 \end{pmatrix} \approx \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} \pmod{q}$$

Matrix from uniformly random vector

#### **Ring-LWE**

$$\begin{pmatrix}
a_0 & -a_3 & -a_2 & -a_1 \\
a_1 & a_0 & -a_3 & -a_2 \\
a_2 & a_1 & a_0 & -a_3 \\
a_3 & a_2 & a_1 & a_0
\end{pmatrix} * \begin{pmatrix}
s_0 \\
s_1 \\
s_2 \\
s_3
\end{pmatrix} + \begin{pmatrix}
e_0 \\
e_1 \\
e_2 \\
e_3
\end{pmatrix} \approx \begin{pmatrix}
b_0 \\
b_1 \\
b_2 \\
b_3
\end{pmatrix} \pmod{q}$$

Matrix from uniformly random vector



$$a(x) * s(x) + e(x) \approx b(x) \pmod{q} \pmod{x^4 + 1}$$
where
$$a(x) = (a_0 + a_1x + a_2x^2 + a_3x^3)$$

$$s(x) = (s_0 + s_1x + s_2x^2 + s_3x^3)$$

$$e(x) = (e_0 + e_1x + e_2x^2 + e_3x^3)$$

$$b(x) = (b_0 + b_1x + b_2x^2 + b_3x^3)$$

14

From Standard LWE Key Exchange to Ring-LWE Key Exchange

## (Standard) LWE Diffie-Hellman key-exchange

#### Public matrix A



Secret vector s' Error vector e'





V' = S'

## (Efficient) Ring-LWE Diffie-Hellman key-exchange

## Public polynomial a(x)

Secret poly s(x) Error poly e(x) Secret poly s'(x) Error poly e'(x)



$$b'(x) = a(x) \cdot s'(x) + e'(x)$$



$$v'(x)=b(x)\cdot s'(x)$$
= a(x)\cdots(x)\cdots'(x) + e(x)\cdots'(x)



**Noisy** shared secret poly

#### Interpolating LWE and ring-LWE: Module LWE

$$a_0$$
  $-a_3$   $-a_2$   $-a_1$ 
 $a_1$   $a_0$   $-a_3$   $-a_2$ 
 $a_2$   $a_1$   $a_0$   $-a_3$ 
 $a_3$   $a_2$   $a_1$   $a_0$ 

$$\begin{bmatrix} a_4 & -a_7 & -a_6 & -a_5 \\ a_5 & a_4 & -a_7 & -a_6 \\ a_6 & a_5 & a_4 & -a_7 \\ a_7 & a_6 & a_5 & a_4 \end{bmatrix} \begin{bmatrix} a_{12} & -a_{15} & -a_{14} & -a_{13} \\ a_{13} & a_{12} & -a_{15} & -a_{14} \\ a_{14} & a_{13} & a_{12} & -a_{15} \\ a_{17} & a_6 & a_5 & a_4 \end{bmatrix} \begin{bmatrix} a_{12} & -a_{15} & -a_{14} \\ a_{13} & a_{12} & -a_{15} \\ a_{15} & a_{14} & a_{13} & a_{12} \end{bmatrix}$$



$$a_{0,0}(x)$$
  $a_{0,1}(x)$ 
 $a_{1,0}(x)$   $a_{1,1}(x)$ 

$$\begin{pmatrix}
a_{0,0}(x) & a_{0,1}(x) \\
a_{1,0}(x) & a_{1,1}(x)
\end{pmatrix} * \begin{pmatrix}
s_0(x) \\
s_1(x)
\end{pmatrix} + \begin{pmatrix}
e_0(x) \\
e_1(x)
\end{pmatrix} \approx \begin{pmatrix}
b_0(x) \\
b_1(x)
\end{pmatrix} \pmod{q} \pmod{x^4 + 1}$$

# **Saber:** Module lattice based key exchange, CPA-secure encryption and CCA-secure KEM

Saber is a round 3 finalist for the NIST PQC standardization process.

#### NIST reported that

"SABER is one of the most promising KEM schemes to be considered for standardization at the end of the third round."

#### Saber is based on

#### **Module Learning with Rounding (MLWR)**

- + Flexibility
- + no generation of errors e, e' etc.
- + efficient bandwidth usage

## Learning with error (LWE) vs Learning with rounding (LWR)

#### LWE:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \\ \vdots \\ e_m \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \\ \vdots \\ b_m \end{pmatrix} \mod q$$

LWR:

$$\frac{p}{q} \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \\ \vdots \\ b_m \end{pmatrix} \mod p$$

Advantages of LWR

where p < q

- + no generation of errors e
- + efficient bandwidth usage

## The Saber protocol



Saber. KEM is obtained via the Fujisaki-Okamoto transform.

## The three security levels of Saber



All polynomials have degree 255

Module dim k=2

Module dim k=3

Module dim k=4

#### How to choose p, q and secret s?

$$\frac{p}{q} \begin{pmatrix} a_{0,0}(x) & \dots & a_{0,k-1}(x) \\ & \dots & & \\ a_{k-1,0}(x) & \dots & a_{k-1,k-1}(x) \end{pmatrix} * \begin{pmatrix} s_0(x) \\ \dots & & \\ s_{k-1}(x) \end{pmatrix} \approx \begin{pmatrix} b_0(x) \\ b_{k-1}(x) \end{pmatrix} \pmod{x^{256} + 1}$$

## How to choose p, q and secret s?

For a given module dimension (k) and polynomial degree (n), the parameters p, q, and secret s influence:

- Security
- Decryption failure
- Performance
- Physical security

Needs investigating implementation aspects

(next part of this talk)

## The Saber protocol: building blocks



#### **Building blocks:**

- Polynomial addition, subtraction, multiplication
- Rounding
- Sampling of secret
- Hashing and Pseudo-random string generation

## How to multiply two polynomials?

- Schoolbook multiplication:  $O(n^2)$
- Karatsuba multiplication:  $O(n^{1.585})$
- Toom-Cook (generalization of Karatsuba)
- Fast Fourier Transform (FFT) multiplication: O(n log n)

#### **Simplified NTT loops**

```
A[n-1]
```

A[n-2]

A[3]

A[2]

A[1]

A[0]

```
for (m=2; m \le n; m=2m)
  for (j=0; j \le m/2-1; j++)
    for (k=0; j<n; k=k+m)</pre>
       index = f(m, j, k);
      Butterfly(A[index],A[index+m/2]);
```

#### **Simplified NTT loops**

```
A[n-1]
A[n-2]
```

```
for (m=2; m \le n; m=2m)
  for (j=0; j \le m/2-1; j++)
    for (k=0; j<n; k=k+m)</pre>
       index = f(m, j, k);
       Butterfly(A[index],A[index+m/2]);
```

A[3] A[2]

A[1]

A[0]

NTT starts with m=2 Butterfly(A[0], A[1])

#### **Simplified NTT loops**

```
A[n-1]
A[n-2]
```

```
for (m=2; m \le n; m=2m)
  for (j=0; j \le m/2-1; j++)
    for (k=0; j<n; k=k+m)</pre>
       index = f(m, j, k);
       Butterfly(A[index],A[index+m/2]);
```

A[3] A[2] A[1]

A[0]

NTT starts with m=2 Butterfly(A[2], A[3])

#### **Simplified NTT loops**

```
A[n-1]
A[n-2]
```

```
for (m=2; m \le n; m=2m)
  for (j=0; j \le m/2-1; j++)
    for (k=0; j<n; k=k+m)</pre>
       index = f(m, j, k);
       Butterfly(A[index],A[index+m/2]);
```

```
A[3]
A[2]
A[1]
A[0]
```

```
NTT starts with m=2
Butterfly(A[n-2], A[n-1])
```

#### **Simplified NTT loops**

```
A[n-1]
A[n-2]
```

```
A[3]
```

A[2]

A[1]

A[0]

```
for (m=2; m \le n; m=2m)
  for (j=0; j \le m/2-1; j++)
    for (k=0; j<n; k=k+m)
      index = f(m, j, k);
      Butterfly(A[index],A[index+m/2]);
```

Next, m increments to m=4. Butterfly(A[0], A[2]), Butterfly(A[4], A[6]) ...

#### **Simplified NTT loops**

```
A[n-1]
A[n-2]
 A[3]
 A[2]
 A[1]
```

A[0]

```
for (m=2; m \le n; m=2m)
  for (j=0; j \le m/2-1; j++)
    for (k=0; j<n; k=k+m)</pre>
       index = f(m, j, k);
       Butterfly(A[index],A[index+m/2]);
```

Next, m increments to m=4.
Butterfly(A[1], A[3]), Butterfly(A[5], A[7]) ...

A[n-1]

A[n-2]

A[3]

A[2]

A[1]

A[0]



#### NTT-based polynomial multiplication: summary

- Asymptotically fastest algorithm for polynomial multiplication
- Implementation effort is needed for making it fast
  - Variable memory access pattern increases access overhead
  - Parallelization requires extra design effort

NewHope, Kyber, Dilithium make NTT integral part.

## Polynomial multiplication choices for Saber

Saber uses Learning with rounding (LWR)

$$\frac{p}{q}$$
 Uniform in [0, q-1] where p < q

and performs polynomial arithmetic modulo p and q.

#### **Choice 1:** prime p and q.

- + Fast NTT-based multiplication
- Expensive rounding
- Rounding bias

#### **Saber went for Choice 2**

#### Choice 2: pow-2 p and q.

- No NTT-based multiplication
- + Free rounding
- + No Rounding bias
- + Generic polynomial mult.
- + Easier masking against SCA
- **+** more ...

## **Toom-Cook polynomial multiplication algorithms**

Toom-Cook multiplication



**Toom-Cook 4 Way needs 7 multiplications** 

Karatsuba would need 9 multiplications

## Toom-Cook 4 Way: step-by-step: splitting



#### Splitting operand into 4 polynomials

Take 
$$y = x^{64}$$

$$A(y) = A_3 y^3 + A_2 y^2 + A_1 y + A_0$$

$$B(y) = B_3 y^3 + B_2 y^2 + B_1 y + B_0$$

# Toom-Cook 4 Way: step-by-step: evaluation

$$w_1 = A(\infty) * B(\infty) = A_3 * B_3$$

$$w_2 = A(2) * B(2) = (A_0 + 2 \cdot A_1 + 4 \cdot A_2 + 8 \cdot A_3) * (B_0 + 2 \cdot B_1 + 4 \cdot B_2 + 8 \cdot B_3)$$

$$w_3 = A(1) * B(1) = (A_0 + A_1 + A_2 + A_3) * (B_0 + B_1 + B_2 + B_3)$$

$$w_4 = A(-1) * B(-1) = (A_0 - A_1 + A_2 - A_3) * (B_0 - B_1 + B_2 - B_3)$$

$$w_5 = A(\frac{1}{2}) * B(\frac{1}{2}) = (8 \cdot A_0 + 4 \cdot A_1 + 2 \cdot A_2 + A_3) * (8 \cdot B_0 + 4 \cdot B_1 + 2 \cdot B_2 + B_3)$$

$$w_6 = A(\frac{-1}{2}) * B(\frac{-1}{2}) = (8 \cdot A_0 - 4 \cdot A_1 + 2 \cdot A_2 - A_3) * (8 \cdot B_0 - 4 \cdot B_1 + 2 \cdot B_2 - B_3)$$

$$w_7 = A(0) * B(0) = A_0 * B_0$$

**Linear operations** 

+

Seven multiplications are computed

# Toom-Cook 4 Way: step-by-step: interpolation

```
// Interpolation
w_2 = w_2 + w_5
w_6 = w_6 - w_5
w_4 = (w_4 - w_3)/2
w_5 = w_5 - w_1 - 64 \cdot w_7
                                                 Linear operations
w_3 = w_3 + w_4
w_5 = 2 \cdot w_5 + w_6
w_2 = w_2 - 65 \cdot w_3
w_3 = w_3 - w_7 - w_1
w_2 = w_2 + 45 \cdot w_3
w_5 = (w_5 - 8 \cdot w_3)/24
                                         This number has a role
w_6 = w_6 + w_2
                                             to play
w_2 = (w_2 + 16 \cdot w_4)/18
w_3 = w_3 - w_5
w_4 = -(w_4 + w_2)
w_6 = (30 \cdot w_2 - w_6)/60
w_2 = w_2 - w_6
return w_1 \cdot y^6 + w_2 \cdot y^5 + w_3 \cdot y^4 + w_4 \cdot y^3 + w_5 \cdot y^2 + w_6 \cdot y + w_7;
```

#### **Linear operations**

## Advanced Vector Extensions (AVX) (intel) Intrinsics Guide



```
__m256i _mm256_abs_epi16 (__m256i a)
__m256i _mm256_add_epi16 (__m256i a, __m256i b)
__m256i _mm256_adds_epi16 (__m256i a, __m256i b)
__m256i _mm256_blend_epi16 (__m256i a, __m256i b, const int imm8)
__m128i _mm_broadcastw_epi16 (__m128i a)
__m256i _mm256_broadcastw_epi16 (__m128i a)
__m256i _mm256_cmpeq_epi16 (__m256i a, __m256i b)
__m256i _mm256_cmpgt_epi16 (__m256i a, __m256i b)
__m256i _mm256_cvtepi16_epi32 (__m128i a)
__m256i _mm256_cvtepi16_epi64 (__m128i a)
__m256i _mm256_cvtepi8_epi16 (__m128i a)
__m256i _mm256_cvtepu8_epi16 (__m128i a)
int _mm256_extract_epi16 (__m256i a, const int index)
__m256i _mm256_hadd_epi16 (__m256i a, __m256i b)
__m256i _mm256_hadds_epi16 (__m256i a, __m256i b)
__m256i _mm256_hsub_epi16 (__m256i a, __m256i b)
__m256i _mm256_hsubs_epi16 (__m256i a, __m256i b)
```

Vectorized instructions for 16-bit operands

## **DSP** instructions



**ARM Cortex-M4** 

- Popular 32-bit microcontroller
- Has DSP instructions for half-word operations





Microcontroller with DSP

Keep coefficients smaller/equal to 16 bits to use

- \_epi16() AVX intrinsics in high-end platforms
- > DSP instructions in low-end microcontrollers

Options for q: 2<sup>16</sup>, 2<sup>15</sup>, 2<sup>14</sup>, 2<sup>13</sup> ..., etc.



# Toom-Cook 4 Way: step-by-step: interpolation

```
// Interpolation
w_2 = w_2 + w_5
w_6 = w_6 - w_5
w_4 = (w_4 - w_3)/2
w_5 = w_5 - w_1 - 64 \cdot w_7
w_3 = w_3 + w_4
w_5 = 2 \cdot w_5 + w_6
w_2 = w_2 - 65 \cdot w_3
w_3 = w_3 - w_7 - w_1
w_2 = w_2 + 45 \cdot w_3
w_5 = (w_5 - 8 \cdot w_3)/24
                                          This number has a role
w_6 = w_6 + w_2
                                             to play
w_2 = (w_2 + 16 \cdot w_4)/18
w_3 = w_3 - w_5
w_4 = -(w_4 + w_2)
w_6 = (30 \cdot w_2 - w_6)/60
w_2 = w_2 - w_6
return w_1 \cdot y^6 + w_2 \cdot y^5 + w_3 \cdot y^4 + w_4 \cdot y^3 + w_5 \cdot y^2 + w_6 \cdot y + w_7;
```

**Linear operations** 

# Division by 24 in Toom-Cook Interpolation

$$w_5 = (w_5 - 8 \cdot w_3)/24$$

- $24 = 8 \cdot 3$
- We are working in R<sub>q</sub> where q = 2<sup>i</sup>
- 3 has inverse in mod q E.g.  $3^{-1}$  mod  $2^{15} \rightarrow 10923$
- So, division by 3 is same as multiplying by 3<sup>-1</sup> mod q

# **Division by 24 in Toom-Cook Interpolation**

$$W_5 = (W_5 - 8 \cdot W_3)/24$$

- $24 = 8 \cdot 3$
- We are working in  $R_q$  where  $q = 2^i$
- But, 8 does not have inverse in mod q

Only option: do actual division

# Working with $q = 2^{15}$



#### In 16-bit Computer:

- Requires careful arithmetic of two words
- Slower arithmetic

# Working with $q = 2^{13}$



#### Fits in 16-bit words ©

#### In 16-bit Computer:

- Easy to implement
- Less complicated arithmetic

#### **Saber Parameters**

- Polynomial length n = 256
- $q = 2^13$
- $p = 2^10$

# Polynomial multiplication in Saber



## Polynomial multiplication using DSP instructions

Cortex-M4: STM32F4-discovery by STMicroelectronics

- 16-bit DSP instructions
- Cross-half-word multiplication possible



A. Karmakar, J.M. Bermudo Mera, S. Sinha Roy and I. Verbauwhede. "Saber on ARM", CHES 2018

For 16x16 Schoolbook multiplication  $\rightarrow$  37.5% reduction overall

## ... more SW optimizations

Saber in RSA coprocessor

B. Wang, X. Gu and Y. Yang. "Saber on ESP32", ACNS 2020.

uses 2048-bit integer multiplier to accelerate polynomial multiplication in Saber.

- $\rightarrow$  Benefits from pow-2 moduli p and q.
- Improved Toom-Cook multiplication in SW

J.M. Bermudo Mera, A. Karmakar, and I. Verbauwhede. "Time-memory trade-off in Toom-Cook multiplication", CHES 2020

proposes SW optimization techniques.

# Results for PQC finalists (NIST category III security) Size in bytes

| Scheme         | Secret Key | Public key | Ciphertext |
|----------------|------------|------------|------------|
| Saber          | 1,344      | 992        | 1,088      |
| Kyber768       | 2,400      | 1,184      | 1,088      |
| NTRUhrss701    | 1,450      | 1,138      | 1,138      |
| McEliece460896 | 13,568     | 52,4160    | 188        |

## Speed in SW Intel Xeon E3-1220, hiphop, supercop-20200906

| Scheme         | Keygen      | Encaps  | Decaps  |
|----------------|-------------|---------|---------|
| Saber          | 80,340      | 103,204 | 103,092 |
| Kyber768       | 53,588      | 74,092  | 64,000  |
| NTRUhrss701    | 269,864     | 26,596  | 64,164  |
| McEliece460896 | 179,358,620 | 76,472  | 267,728 |

SaberX4 is a batched implementation of Saber for higher operations/sec. Very recent implementation uses NTT-based multiplication and reports ~20% speedup.

Saber in Hardware [CHES 2020]

#### **Performance bottlenecks**

#### Two 'big' building blocks

- SHA/SHAKE
  - Keccak is slow in SW
  - But fast is HW (26 cycles per permutation)
  - Saber protocol uses serialized Keccak calls
    - We use one Keccak core
    - Simplifies HW implementation
- Polynomial multiplication

#### **Performance bottlenecks**

## Two 'big' building blocks

- SHA/SHAKE
  - Keccak is slow in SW
  - But fast is HW (26 cycles per permutation)
  - Saber protocol uses serialized Keccak calls
    - > We use one Keccak core
    - > Simplifies HW implementation
- Polynomial multiplication
  - Saber protocol allows any polynomial mul. algo.
  - So, choose the best for the target HW

# Polynomial multiplication(s) in Saber

## Interesting features:

- 1. Polynomials are of (small) degree 255
- 2. Moduli  $p = 2^{10}$  and  $q = 2^{13}$ 
  - No modular reduction circuit
- 3. For any A(x)\*B(x)
  - ➤ A(x) is always a secret polynomial where coefficients are small [-3, 3], [-4, 4] or [-5, 5].
  - $\triangleright$  B(x) is either modulo p or q

Can we design a hardware that benefits from above features?

## **Toom-Cook in HW?**

16



#### Schoolbook in HW?

```
Algorithm: Schoolbook algorithm
acc(x) \leftarrow 0
for i = 0; i < 256; i++ do
for j = 0; j < 256; j++ do
acc[j] = acc[j] + b[j] \cdot a[i]
b = b \cdot x \mod \langle x^{256} + 1 \rangle
return acc
```

#### Disadvantages

- O(n²) complexity
- But n = 256 (small)

#### Advantages

- Simple structure
- Easier to implement
- Optimal memory
- High flexibility

Our hardware architecture uses schoolbook. [CHES 2020]

# Schoolbook polynomial multiplier

Multiply and Accumulate (MAC)

- s[i] are small [-3, 3], [-4, 4] or [-5, 5]
- a[i] are modulo  $p=2^{10}$  or  $q=2^{13}$
- No modular reduction



MAC unit requires little area (50 LUTs)



# High-speed schoolbook polynomial multiplier



- 256 parallel MACs are used
- Secret and result polynomials are stored in registers
- one polynomial multiplication requires only 256 cycles
- Small control logic

# **Instruction Set Coprocessor for Saber**



- Full HW for CCA-secure Saber KEM
- Flexibility 

  unified architecture for three Saber variants
- Generic framework → can be followed by other schemes

#### **ISA Saber: Performance results**

#### Target platform Ultrascale+ XCZU9EG-2FFVB1156 FPGA



#### **ISA Saber: Area results**

Target platform Ultrascale+ XCZU9EG-2FFVB1156 FPGA



In one FPGA: 11 coprocessors can be fit  $\rightarrow$  504 K / 416 K / 342 K KEMs per sec

Slide courtesy: Andrea Basso [CHES 2020 talk]

... the game continues ...

Making PQC Side Channel Resistant

## **Side Channel Analysis of Lattice-based Crypto**



Assumption: the secret s is static.

Attacker's goal: know the secret s

- P. Ravi, S. Sinha Roy, A. Chattopadhyay, S. Bhasin. "Generic Side-channel attacks on CCA-secure encapsulation schemes" in CHES 2020.
- Z. Xu, O. Pemberton, S. Sinha Roy and D. Oswald.
- "Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber." IACR ePrint 2020/912.

## **Masking Saber**

Two unique advantages for Saber

- 1. Use of power-of-2 moduli makes 'Arithmetic to Boolean' conversion a lot more efficient.
- 2. Use of Learning with rounding (LWR) eliminates need for error sampling
  - → No need for masked error sampler
  - → Reduction in randomness requirement

Cycle counts on ARM Cortex-M4

| Scheme                          | Unmasked  | Masked             |
|---------------------------------|-----------|--------------------|
| Saber (MLWR with pow-2 modulus) | 1,123,280 | 2,833,348 (2.52x)  |
| Ring LWE with prime modulus     | 4,416,918 | 25,334,493 (5.74x) |

M. Van Beirendonck, JP. D'Anvers, A. Karmakar, J. Balasch, and I. Verbauwhede. "A Side-Channel Resistant Implementation of SABER" in IACR ePrint 2020/733.

#### **Conclusions**

- Saber targets high security, flexibility, efficiency, and simplicity
- Use of LWR results
  - Less randomness requirement
  - Lower communication bandwidth
- Use of power-of-2 moduli results in
  - Simpler and efficient implementation
  - Easier masking against SCA
- Use of generic polynomial multiplication
  - Gives freedom to implementors
  - Platform-dependent implementation strategy
  - AVX, M4, RSA card, FPGA, ASIC, ...

#### **Future works**

More efficient implementations

Lightweight hardware architectures

Side channel and fault attack resistant HW and SW

 Study Saber's compatibility with lattice-based signature schemes Dilithium and Falcon.