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Classical Diffie-Hellman Key Agreement
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Public info: Prime p and base g

Secret a

x = ga mod p

Secret b

Computes ya mod p

y = gb mod p

Computes xb mod p
= gab mod p = gab mod p

Why is this secure?
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Discrete Logarithm Problem

x = ga mod p

Given x, g and p, compute the secret a such that

Latest record (Dec 2019) is 795-bit. [BGGHTZ’19]
Using Intel Xeon Gold 6130 CPUs.
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Widely Used Public Key Algorithms 

RSA cryptosystem
(Integer factorization problem)

Elliptic curve cryptosystem (ECC)
(Elliptic curve discrete logarithm problem)
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Quantum computing

RSA

ECC

Shor’s Algo.
+

Quantum Computer

RSA

ECC
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Existing quantum algorithms cannot solve 

• Lattice-based cryptography 
• Multivariate cryptography 
• Hash-based cryptography 
• Code-based cryptography 
• Supersingular elliptic curve isogeny cryptography

Post Quantum Public Key Cryptography

‘Learning With Errors’ 
(LWE) problem
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Given two linear equations with unknown x and y

3x + 4y = 26
2x + 3y = 19

Find x and y.

3   4
2   3

x
y

26
19

=.or
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Solving system of linear equations

System of linear equations with unknown s

Gaussian elimination solves s when number of equations m ≥ n
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Solving system of linear equations with errors

• Search Learning With Errors (LWE) problem:
Given (A, b) → computationally infeasible to solve (s, e)

• Decisional Learning With Errors (LWE) problem :
Given (A, b) → hard to distinguish from random

mod q

Matrix A Vector b



Diffie-Hellman styled Key Exchange based on LWE
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Public matrix A

Noisy shared secret

Secret vector s 
Error vector e

Secret vector s’ 
Error vector e’A sb = e+x

sv

T

= b’ x s’v’

T

= bx

As’b’

T

= e’

T

+x

T



FRODO: An example of LWE scheme 
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FRODO uses a 640-matrix dimension (100-bit security) 

FRODO on ARM Cortex M4 @ 24 MHz

Key gen Encapsulation Decapsulation

81 M 86 M 87 M

• Around 3.3 sec per operation

• Slow due to expensive matrix-vector multiplications

Can we improve the speed? 



Standard LWE
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s0

s1

s2

s3

e0

e1

e2

e3

b0

b1

b2

b3

≈+* (mod q)

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

s0

s1

s2

s3

e0

e1

e2

e3

b0

b1

b2

b3

≈+* (mod q)

Uniformly random matrix

Matrix from uniformly 
random vector

Ring LWE

a0

a1

a2

a3

-a3

a0

a1

a2

-a2

-a3

a0

a1

-a1

-a2

-a3

a0
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a0 -a3 -a2 -a1 

a1 a0 -a3 -a2 

a2 a1 a0 -a3 

a3 a2 a1 a0 

s0

s1

s2

s3

e0

e1

e2

e3

b0

b1

b2

b3

≈+* (mod q)

Matrix from uniformly 
random vector

Ring-LWE

where
a(x) = (a0 + a1x + a2x2 + a3x3 )
s(x) = (s0 + s1x + s2x2 + s3x3 )  
e(x) = (e0 + e1x + e2x2 + e3x3 )
b(x) = (b0 + b1x + b2x2 + b3x3 )

a(x) * s(x) + e(x) ≈ b(x)  (mod q) (mod x4 + 1)



From Standard LWE Key Exchange

to Ring-LWE Key Exchange
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(Standard) LWE Diffie-Hellman key-exchange
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Public matrix A

sv

T

= b’ s’v’

T

= b

Noisy shared secret

As’b’

T

= e’

T

+

A sb = e+

Secret vector s 
Error vector e

Secret vector s’ 
Error vector e’



(Efficient) Ring-LWE Diffie-Hellman key-exchange
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Public polynomial  a(x)

Noisy shared secret poly

b(x) = a(x)∙s(x) + e(x)

b’(x) = a(x)∙s’(x) + e’(x)

v(x)=b’(x)∙s(x)
= a(x)∙s(x)∙s’(x) + e’(x)∙s(x)

v’(x)=b(x)∙s’(x)
= a(x)∙s(x)∙s’(x) + e(x)∙s’(x)

Secret poly s(x) 
Error poly e(x)

Secret poly s’(x) 
Error poly e’(x)
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Interpolating LWE and ring-LWE: Module LWE

a0 -a3 -a2 -a1 

a1 a0 -a3 -a2 

a2 a1 a0 -a3 

a3 a2 a1 a0 

a4 -a7 -a6 -a5 

a5 a4 -a7 -a6 

a6 a5 a4 -a7 

a7 a6 a5 a4 

a8 -a11 -a10 -a9 

a9 a8 -a11 -a10 

a10 a9 a8 -a11 

a11 a10 a7 a8

a12 -a15 -a14 -a13

a13 a12 -a15 -a14

a14 a13 a12 -a15 

a15 a14 a13 a12

s0

s1

s2

s3

s4

s5

s6

s7

e0

e1

e2

e3

e4

e5

e6

e7

b0

b1

b2

b3

b4

b5

b6

b7

* + ≈

a0,0(x)      a0,1(x)

a1,0(x)      a1,1(x)

s0(x)

s1(x)

e0(x)

e1(x)

b0(x)

b1(x)
* + ≈ (mod q) (mod x4 + 1)



19

Saber: Module lattice based key exchange,
CPA-secure encryption and CCA-secure KEM

Saber is based on
Module Learning with Rounding (MLWR)
+ Flexibility
+ no generation of errors e, e′ etc.
+ efficient bandwidth usage 

Saber is a round 3 finalist for the NIST PQC standardization 
process.

NIST reported that

“SABER is one of the most promising KEM schemes to be considered 
for standardization at the end of the third round.”
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Learning with error (LWE) vs Learning with rounding (LWR)

mod q

mod p

LWE:

LWR:

Advantages of LWR 
+ no generation of errors e
+ efficient bandwidth usage 

where p < q



21

The Saber protocol

Saber.KEM is obtained via the Fujisaki-Okamoto transform.
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The three security levels of Saber

SABER

LiteSaber
(Category 1)

Saber
(Category 3)

FireSaber
(Category 5)

a0,0(x)   ... a0,k-1(x)
...

ak-1,0(x) ... ak-1,k-1(x)

s0(x)
…
sk-1(x)

b0(x)

bk-1(x)
* ≈ (mod x256 + 1)

p
q

All polynomials have degree 255

Module dim k=2 Module dim k=3 Module dim k=4

How to choose p, q and secret s?
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How to choose p, q and secret s?

For a given module dimension (k) and polynomial degree (n),
the parameters p, q, and secret s influence:

• Security

• Decryption failure 

• Performance

• Physical security

Needs investigating 
implementation aspects

(next part of 
this talk)
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The Saber protocol: building blocks

Building blocks: 
• Polynomial addition, subtraction, multiplication
• Rounding
• Sampling of secret
• Hashing and Pseudo-random string generation



How to multiply two polynomials?
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• Schoolbook multiplication: O(n2)

• Karatsuba multiplication: O(n1.585)

• Toom-Cook (generalization of Karatsuba)

• Fast Fourier Transform (FFT) multiplication: O(n log n)



Memory access during NTT

26

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m)

{

for(j=0; j<=m/2-1; j++)

{

for(k=0; j<n; k=k+m)

{

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}
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A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

NTT starts with m=2
Butterfly(A[0], A[1])

for(m=2; m<=n; m=2m)

{

for(j=0; j<=m/2-1; j++)

{

for(k=0; j<n; k=k+m)

{

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

Memory access during NTT
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A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

NTT starts with m=2
Butterfly(A[2], A[3])

for(m=2; m<=n; m=2m)

{

for(j=0; j<=m/2-1; j++)

{

for(k=0; j<n; k=k+m)

{

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

Memory access during NTT
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A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

NTT starts with m=2
Butterfly(A[n-2], A[n-1])

for(m=2; m<=n; m=2m)

{

for(j=0; j<=m/2-1; j++)

{

for(k=0; j<n; k=k+m)

{

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

Memory access during NTT
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A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m)

{

for(j=0; j<=m/2-1; j++)

{

for(k=0; j<n; k=k+m)

{

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

Next, m increments to m=4. 
Butterfly(A[0], A[2]), Butterfly(A[4], A[6]) …

Memory access during NTT
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A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

Next, m increments to m=4. 
Butterfly(A[1], A[3]), Butterfly(A[5], A[7]) …

for(m=2; m<=n; m=2m)

{

for(j=0; j<=m/2-1; j++)

{

for(k=0; j<n; k=k+m)

{

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

Memory access during NTT
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A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

ω

A[indx] A[indx+m/2]

A[indx+m/2]

+ -

A[indx] A[indx]

Butterfly



NTT-based polynomial multiplication: summary
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• Asymptotically fastest algorithm for polynomial multiplication

• Implementation effort is needed for making it fast

➢ Variable memory access pattern increases access overhead

➢ Parallelization requires extra design effort

NewHope, Kyber, Dilithium make NTT integral part.



Polynomial multiplication choices for Saber
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Saber uses Learning with rounding (LWR) 

where p < qUniform in [0, q-1]

and performs polynomial arithmetic modulo p and q.

Choice 1: prime p and q.

+ Fast NTT-based multiplication

- Expensive rounding

- Rounding bias

Choice 2: pow-2 p and q.

- No NTT-based multiplication

+ Free rounding

+ No Rounding bias

+ Generic polynomial mult.

+ Easier masking against SCA

+ more …
Saber went for Choice 2



Toom-Cook polynomial multiplication algorithms

• Toom-Cook multiplication

. . . . . . . .

. . . . . . . . . .

1 2 4

256

64 64

A(x) . . . . . . . .

. . . . . . . . . .

1 2 4

256

64 64

B(x)

Toom-Cook 4 Way needs 7 multiplications

Karatsuba would need 9 multiplications



Toom-Cook 4 Way: step-by-step: splitting

Splitting operand into 4 polynomials
Take y = x64

A(y) = A3 y3 + A2 y2 + A1 y + A0

B(y) = B3 y3 + B2 y2 + B1 y + B0

. . . . . . . .

. . . . . . . . . .

1 2 4

256

64 64

A(x) . . . . . . . .

. . . . . . . . . .

1 2 4

256

64 64

B(x)



Toom-Cook 4 Way: step-by-step: evaluation 

Linear operations
+
Seven multiplications are computed



Toom-Cook 4 Way: step-by-step: interpolation 

Linear operations

Linear operations

This number has a role
to play



Advanced Vector Extensions (AVX)

Vectorized instructions for 16-bit operands



DSP instructions

• Popular 32-bit microcontroller

• Has DSP instructions for half-word operations

ARM Cortex-M4



Keep coefficients smaller/equal to 16 bits to use

➢ _epi16( ) AVX intrinsics in high-end platforms

➢ DSP instructions in low-end microcontrollers

Microcontroller with DSPAVX

+

Options for q: 216, 215, 214, 213 …, etc.



Toom-Cook 4 Way: step-by-step: interpolation 

Linear operations

This number has a role
to play



Division by 24 in Toom-Cook Interpolation

w5 = (w5 – 8 ∙ w3)/24

• 24 = 8 ∙ 3

• We are working in Rq where q = 2i  

• 3 has inverse in mod q  
E.g.   3-1 mod 215

→ 10923

• So, division by 3 is same as multiplying by 3-1 mod q



Division by 24 in Toom-Cook Interpolation

w5 = (w5 – 8 ∙ w3)/24

• 24 = 8 ∙ 3

• We are working in Rq where q = 2i  

• But, 8 does not have inverse in mod q  

Only option: do actual division



Working with q = 215

In 16-bit Computer: 
• Requires careful arithmetic of two words 
• Slower arithmetic 

1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0

Example: integer division by 8=23

1 0 0 1 0 1 0 1 1 1

1 0…

1 0 1

15+3 bits are useful

116

1

01 (mod q)
115



Working with q = 213

In 16-bit Computer: 
• Easy to implement
• Less complicated arithmetic 

1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0

Example: integer division by 8=23

1 0 0 1 0 1 0 1 1 1

1 0…

1 0 1

13+3 bits are useful

116

1

(mod q)
113

Fits in 16-bit words    ☺

Saber Parameters

• Polynomial length n = 256

• q = 2^13

• p = 2^10



Polynomial multiplication in Saber

. . . . . . . .

. . . . . . . . . .

1 2 4

256

64 64

A(x) . . . . . . . .

. . . . . . . . . .

1 2 4

256

B(x)

1 2 3

. .

. .

32

16

. .. .

Schoolbook multiplications (AVX/DSP instructions)

Hybrid of 
• Toom-Cook 4 way
• Karatsuba
• Schoolbook



Cortex-M4: STM32F4-discovery  by STMicroelectronics

- 16-bit DSP instructions
- Cross-half-word multiplication possible

48

Polynomial multiplication using DSP instructions

A. Karmakar, J.M. Bermudo Mera, S. Sinha Roy and I. Verbauwhede.
“Saber on ARM", CHES 2018

For 16x16 Schoolbook multiplication → 37.5% reduction overall 
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… more SW optimizations

• Saber in RSA coprocessor

uses 2048-bit integer multiplier to accelerate polynomial
multiplication in Saber.
→ Benefits from pow-2 moduli p and q.

• Improved Toom-Cook multiplication in SW

proposes SW optimization techniques.

B. Wang, X. Gu and Y. Yang. “Saber on ESP32”,  ACNS 2020.

J.M. Bermudo Mera, A. Karmakar, and I. Verbauwhede.
“Time-memory trade-off in Toom-Cook multiplication", CHES 2020



Results for PQC finalists (NIST category III security)  

Size in bytes

Scheme Secret Key Public key Ciphertext

Saber 1,344 992 1,088

Kyber768 2,400 1,184 1,088

NTRUhrss701 1,450 1,138 1,138

McEliece460896 13,568 52,4160 188

Intel Xeon E3-1220, hiphop, supercop-20200906Speed in SW

Scheme Keygen Encaps Decaps

Saber 80,340 103,204 103,092

Kyber768 53,588 74,092 64,000

NTRUhrss701 269,864 26,596 64,164

McEliece460896 179,358,620 76,472 267,728

SaberX4 is a batched implementation of Saber for higher operations/sec.
Very recent implementation uses NTT-based multiplication and reports ~20% speedup.
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Saber in Hardware [CHES 2020]
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Performance bottlenecks

Two ‘big’ building blocks

• SHA/SHAKE
▪ Keccak is slow in SW
▪ But fast is HW (26 cycles per permutation)
▪ Saber protocol uses serialized Keccak calls
➢ We use one Keccak core
➢ Simplifies HW implementation

• Polynomial multiplication
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Performance bottlenecks

Two ‘big’ building blocks

• SHA/SHAKE
▪ Keccak is slow in SW
▪ But fast is HW (26 cycles per permutation)
▪ Saber protocol uses serialized Keccak calls
➢ We use one Keccak core
➢ Simplifies HW implementation

• Polynomial multiplication
▪ Saber protocol allows any polynomial mul. algo.
▪ So, choose the best for the target HW



Polynomial multiplication(s) in Saber

Interesting features:
1. Polynomials are of (small) degree 255 

2. Moduli p = 210 and q = 213

➢ No modular reduction circuit

3. For any A(x)*B(x)
➢ A(x) is always a secret polynomial where 

coefficients are small [−3, 3], [−4, 4] or [−5, 5].
➢ B(x) is either modulo p or q

Can we design a hardware that benefits from above 
features?



Toom-Cook in HW?

. . . . . . . .

. . . . . . . . . .

1 2 4

256

64 64

A(x) . . . . . . . .

. . . . . . . . . .

1 2 4

256

B(x)

1 2 3

. .

. .

32

16

. .. .

Implementation challenges
• Recursive algorithm → not convenient
• Extra memory



Schoolbook in HW?

Disadvantages
• O(n2) complexity
• But n = 256 (small)

Advantages
• Simple structure
• Easier to implement
• Optimal memory
• High flexibility

Our hardware architecture uses schoolbook. [CHES 2020]



Schoolbook polynomial multiplier

• s[i] are small [−3, 3], [−4, 4] or [−5, 5]
• a[i] are modulo p=210 or q=213

• No modular reduction

Multiply and Accumulate
(MAC)

MAC unit requires little area (50 LUTs)



High-speed schoolbook polynomial multiplier

• 256 parallel MACs are used 
• Secret and result polynomials are stored in registers
• one polynomial multiplication requires only 256 cycles
• Small control logic

MACMAC



Instruction Set Coprocessor for Saber 

• Full HW for CCA-secure Saber KEM
• Flexibility → unified architecture for three Saber variants
• Generic framework → can be followed by other schemes
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ISA Saber: Performance results 

Target platform Ultrascale+ XCZU9EG-2FFVB1156 FPGA

Slide courtesy: Andrea Basso [CHES 2020 talk]
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ISA Saber: Area results 

Target platform Ultrascale+ XCZU9EG-2FFVB1156 FPGA

Slide courtesy: Andrea Basso [CHES 2020 talk]

In one FPGA: 11 coprocessors can be fit → 504 K / 416 K / 342 K 
KEMs per sec
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… the game continues …

Making PQC Side Channel Resistant



Side Channel Analysis of Lattice-based Crypto

Assumption: the secret s is static.

Attacker’s goal: know the secret s

Secret s

P. Ravi, S. Sinha Roy, A. Chattopadhyay, S. Bhasin. “Generic Side-channel 
attacks on CCA-secure encapsulation schemes” in CHES 2020.

Z. Xu, O. Pemberton, S. Sinha Roy and D. Oswald. 
"Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with 
Chosen Ciphertexts: The Case Study of Kyber." IACR ePrint 2020/912.
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Masking Saber
Two unique advantages for Saber

1. Use of power-of-2 moduli makes ‘Arithmetic to Boolean’ 
conversion a lot more efficient.

2. Use of Learning with rounding (LWR) eliminates need for 
error sampling 
→ No need for masked error sampler
→ Reduction in randomness requirement

Scheme Unmasked Masked

Saber (MLWR with pow-2 modulus) 1,123,280 2,833,348 (2.52x)

Ring LWE with prime modulus 4,416,918 25,334,493 (5.74x)

Cycle counts on ARM Cortex-M4

M. Van Beirendonck, JP. D’Anvers, A. Karmakar, J. Balasch, and I. Verbauwhede. 
“A Side-Channel Resistant Implementation of SABER” in IACR ePrint 2020/733.
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Conclusions

• Saber targets high security, flexibility, efficiency, and simplicity

• Use of LWR results 
• Less randomness requirement
• Lower communication bandwidth

• Use of power-of-2 moduli results in
• Simpler and efficient implementation
• Easier masking against SCA

• Use of generic polynomial multiplication
• Gives freedom to implementors
• Platform-dependent implementation strategy
• AVX, M4, RSA card, FPGA, ASIC, …
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Future works

• More efficient implementations

• Lightweight hardware architectures

• Side channel and fault attack resistant HW and SW 

• Study Saber’s compatibility with lattice-based signature 
schemes Dilithium and Falcon.


