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 The newly proposed Federated Learning [1-3] Is an attractive framework
for distributed learning.

» Use federated learning framework to achieve a more efficient deep-
learning side-channel attack.

« Compare federated learning to other aggregation methods in deep-
learning side-channel attacks’ contexts.
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Side-channel attack (SCA):

source: hackaday.com

« Side-channel signals are related to the data processed
e e.g. different amount of power is consumed

e Deep Learning (DL) makes SCA more powerful
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Profiling Deep-learning model

Attack

A trace from the victim board

4 Capture
v , |

e The attacker doesn't have full control to the victim device..

« The board diversity can significantly reduce the attack accuracy (96%-13%)[4].
« How to mitigate the effect caused by the board diversity?
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To solve this problem:
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1. Federated learning [1-3]
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https://proandroiddev.com/federated-learning-e79e054c33ef
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1. Model-level aggregation (Federated learning)
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2. Data-level aggregation (Multi-source training [5-7])

Traces from board 1

Data-level aggregation

Traces from N boards Global model
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3. Output-level aggregation (Tandem DL-SCA [8])
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Output-level aggregation
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Advanced Encryption Standard (AES) [9]

« Attack point

Plaintext, 16 bytes
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Local model structure

» Multi-Layer Perceptron (MLP)

* Input size: 96 (defined by the subkey)

» OQutput size: 256 (defined by the identity model)
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Layer Type Output Shape Parameter #

Input (Dense)  (None,
Dense 1 (None,
Dense 2 (None,
Dense 3 (None,
Dense 4 (None,
Output (Dense) (None,

200)

)
)
200)
200)

)

19400
40200
40200
40200
40200
51456

Total Parameters: 231,656
Table 1. Local model’s architecture summary.
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1. Output-level aggregation

Three local models:

e Local model 1 is trained on D1

(91.3% tested on D1)

e Local model 2 is trained on D2

(92.7% tested on D2)

e Local model 3 is trained on D3

(90.2% tested on D3)

Table.1 Probability of recovering the key from a single trace by using local models
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Device Local model 1 Local model 2 Local model 3

D4 29.1% 42.6% 40.8%

D5 48.4% 63.8% 21.8%

D6 38.3% 33.6% 39.7%

D7 6.8% 10.4% 57.9%

D8 27.3% 36.1% 50.0%

D9 33.9% 51.8% 35.4%
Average 34.9% 41.3% 40.9%

Table.2 The probability of recovering the key from a single trace by using the output-level aggregation

Device

D4

D5

D6

D7

D8

D9

Average

Single-trace key recovery rate

64.5%

76.0%

66.0%

18.4%

68.3%

58.8%

58.7%
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2. Model-level aggregation (Federated Learning)

e Train federated model on D1, 2 and 3.

e Test on D4~9

 We choose model generated at the

Probability of recovering a subkey
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Table.3 The probability of recovering the key from a single trace by using the model-level aggregation
Device D4 D5 D6 D7 D8 D9 | Average
Single-trace key recovery rate | 89.8% | 91.2% | 91.4% | 355% | 88.5% | 69.6% | 77.7%

20
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3. Data-level aggregation

Table.4 The probability of recovering the key from a single trace by using the data-level aggregation

Device

D4

D5

D6

D7

D8

D9

Average

Single-trace key recovery rate

74.6%

83.0%

73.6%

37.5%

62.3%

81.5%

68.8%

Summary

Table.5 The probability of recovering the key from a single trace with different aggregation approaches

Aggregation method

Device |Model-level approach|Output-level approach|Data-level approach

Dy 89.8% 64.5% 74.6%

Ds 91.2% 76.0% 83.0%

Ds 91.4% 66.0% 73.6%

D~ 35.5% 18.4% 37.5%

Ds 88.5% 68.3% 62.3%

Do 69.6% 58.8% 81.5%
average 77.7% 58.7% 68.8%
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Conclusion:
 We use federated learning framework to make DLSCA more efficient.

 Model-level aggregation (federated learning) is capable of outperforming
data and output —level aggregation approaches.

Future Work:

e Countermeasures
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