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Motivation and Contribution
• Motivation

• Improve the randomness of the previous work.
• Let’s make the Cryptographically Secure Pseudo Random Number 

Generator, CSPRNG) for Embedded Processor.

• Contribution
• Novel GAN based PRNG (DRBG) mechanism design for embedded 

processors.
• High randomness validation through NIST test suite. 



Random Number Generator
• Random Number Generator (RNG)

• Produce a sequence of numbers that cannot be predicted better than 
by a random chance.

• True Random Number Generator (TRNG)
• Must produce unpredictable bits even if every detail of the generator is 

available.
• Pseudo Random Number Generator (PRNG)

• Deterministic Random Bit Generator (DRBG) 
: Generate random numbers by producting the random sequence with 
perfect balance between 0’s and 1’s.



TensorFlow and TensorFlow Lite

• TensorFlow
• Open-source software library for machine learning applications, such 

as neural networks.
• TensorFlow Lite

• Official framework for running TensorFlow model inference on edge 
devices.



Edge TPU
• USB type hardware accelerators.
• ASIC designed to run inference at the edge.
• Support the TensorFlow Lite.
• Small footprint, low power.



Previous GAN based PRNG Implementation

• Generator
• Generate random decimal number
• The range of output : [0,216 − 1]

• Predictor
• Used as a discriminator and training data is not required.
• Consist of 4 Conv1D layers.



System Configuration – Training & inference

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑

0 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 0

Generate
random bit stream

0 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

0 ⋯ 0

Predict
random bit stream
to come after 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0

compare

predicted

Split into 2 parts

Generator

Predictor

Trained Generator

Edge
TPU

convert to

TensorFlow Lite

compile 
& 

deploy

IoT Device

Entropy Random
seed

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

Random Bit Stream

inference

input

Training phase Inference phase



The generator model
• 𝒏𝒏,𝒌𝒌 are adjustable hyperparameter

• Determine the number of bits to train.

• sigmoid activation function
• Set the number of the desired range through bit-wise training (0 or 1) 

instead of training with a specific range of numbers.
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The predictor model
• Split generated bit stream into 2 parts.

• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 : for training
• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 : for comparision with predicted bit stream
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The predictor model 
• Using RNN

• Time series analysis using only CNN is difficult to have a mutual effect 
as the distance between data increases.

• RNN is used to predict data following a random walk and have long-
term dependency. 
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GAN based PRNG
• Training the generator

• Trough combined model.
• Loss is calculated by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 .
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• Convert to decimal number.
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• The range of number is determined by 
setting 𝑟𝑟 and 𝑚𝑚.

0 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 0

0 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 0

0 ⋯ 0

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

prediction 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃)

Generator

Predictor

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐺𝐺

Combined model (Generator + Predictor)

∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡),𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑟𝑟),𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑚𝑚)



GAN based PRNG for Embedded Processors
• Deploy only generator model

• The predictor is not required 
to generate the random bit stream.

• Simple architecture for 
resource-constrained environment.
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GAN based PRNG for Embedded Processors
• Entropy for random seed

• The trained generator is a PRNG 
with a fixed internal state.
 random seed with 

sufficiently high entropy is required.

• Collected from IoT device.
(e.g. sensor data)
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Comparison with the previous work



Visualization
• After training, the internal state changes.
• The generated bit stream is distributed without a pattern.

Visualization of random bit stream generated by the generator. 
Before training (left) and after training (right).



NIST SP 800-22 : Randomness test for PRNG
• Improving the randomness of PRNG.

• In the previous work, tests such as frequency and cumulative sums 
failed because they only used convolution layer.

final analysis report of NIST test suite ; (left) previous work, (right) this work. 



NIST SP 800-22 : Randomness test for PRNG
• The failed test instance (𝐹𝐹𝐼𝐼/%) is reduced by about 1.91%.
• No failed p-value (𝐹𝐹𝑃𝑃) in this work.
• The failed individual test (𝐹𝐹%) is reduced by about 2.5%.



Unpredictability for CSPRNG
• Next bit test

• The 𝑚𝑚 + 1𝑡𝑡𝑡 bit cannot be predicted with the 𝑚𝑚-bit.
• The training process means this test, so if the loss is minimized, 

the next bit will be unpredictable.



Unpredictability for CSPRNG
• State compromise attack resistance

• When the internal state of PRNG is known at some time, 
the output can be predicted after or before.

• Reseed for each batch to ensure resistance.
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• Execution environment
• The PRNGs on desktop : Intel Core i5-8259 CPU@2.30GHz x 8, 16GB.
• MPCG64 : STM32F4.
• This work : Edge TPU.

Comparison With Existing PRNGs



Conclusion and Future work
• Conclusion

• GAN based PRNG (DRBG) for embedded processors.
• High randomness validation through the NIST test suite.

• Future work
• Optimizing to maintain high randomness while being more efficient for 

resource-constrained environments.
• Applying other GAN models for high randomness and efficiency.
• Designing a lightweight model through pruning.
• Efficient entropy collection.



Thank you for your attention!
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