
Generative Adversarial Networks-Based
Pseudo-Random Number Generator for
Embedded Processors
Hyunji Kim, Yongbeen Kwon, Minjoo Sim, Sejin Lim,

Hwajeong Seo
IT Department, Hansung University, Seoul, Korea

Contents
• Introduction
• Background
• Proposed Method
• Evaluation
• Conclusion

Motivation and Contribution
• Motivation

• Improve the randomness of the previous work.
• Let’s make the Cryptographically Secure Pseudo Random Number

Generator, CSPRNG) for Embedded Processor.

• Contribution
• Novel GAN based PRNG (DRBG) mechanism design for embedded

processors.
• High randomness validation through NIST test suite.

Random Number Generator
• Random Number Generator (RNG)

• Produce a sequence of numbers that cannot be predicted better than
by a random chance.

• True Random Number Generator (TRNG)
• Must produce unpredictable bits even if every detail of the generator is

available.
• Pseudo Random Number Generator (PRNG)

• Deterministic Random Bit Generator (DRBG)
: Generate random numbers by producting the random sequence with
perfect balance between 0’s and 1’s.

TensorFlow and TensorFlow Lite

• TensorFlow
• Open-source software library for machine learning applications, such

as neural networks.
• TensorFlow Lite

• Official framework for running TensorFlow model inference on edge
devices.

Edge TPU
• USB type hardware accelerators.
• ASIC designed to run inference at the edge.
• Support the TensorFlow Lite.
• Small footprint, low power.

Previous GAN based PRNG Implementation

• Generator
• Generate random decimal number
• The range of output : [0,216 − 1]

• Predictor
• Used as a discriminator and training data is not required.
• Consist of 4 Conv1D layers.

System Configuration – Training & inference

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑

0 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 0

Generate
random bit stream

0 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

0 ⋯ 0

Predict
random bit stream
to come after 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0

compare

predicted

Split into 2 parts

Generator

Predictor

Trained Generator

Edge
TPU

convert to

TensorFlow Lite

compile
&

deploy

IoT Device

Entropy Random
seed

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

Random Bit Stream

inference

input

Training phase Inference phase

The generator model
• 𝒏𝒏,𝒌𝒌 are adjustable hyperparameter

• Determine the number of bits to train.

• sigmoid activation function
• Set the number of the desired range through bit-wise training (0 or 1)

instead of training with a specific range of numbers.

1 ⋯ 0

⋮ ⋮
0 ⋯ 1

Generator

Dense

LeakyReLu

Dense

LeakyReLu

Dense

LeakyReLu

Dense

LeakyReLu

Dense

Sigmoid

𝑛𝑛

k

Random
seed

The predictor model
• Split generated bit stream into 2 parts.

• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 : for training
• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 : for comparision with predicted bit stream

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 (𝑛𝑛 − 1)
𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 (𝑛𝑛 − 2)
1 ⋯ 0

⋮ ⋮
0 ⋯ 1

1 ⋯ 0

⋮
0 ⋯ 1

generated bit stream

The predictor model
• Using RNN

• Time series analysis using only CNN is difficult to have a mutual effect
as the distance between data increases.

• RNN is used to predict data following a random walk and have long-
term dependency.

• 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑷𝑷 = 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 − 𝑹𝑹𝑹𝑹𝑹𝑹𝑷𝑷)

0 ⋯ 0

0 ⋯ 1
Predictor

Conv1D

LeakyReLu

Conv1D

LeakyReLu

Conv1D

LeakyReLu

Dense

Sigmoid
RNN

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1

prediction (𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃)

compare

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0

1 ⋯ 0

⋮

GAN based PRNG
• Training the generator

• Trough combined model.
• Loss is calculated by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 .
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐺𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 � 0.5

• Convert to decimal number.
• 𝑐𝑐 ← ∑𝑖𝑖=0𝑚𝑚+𝑡𝑡−1 2𝑖𝑖 � 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟

• The range of number is determined by
setting 𝑟𝑟 and 𝑚𝑚.

0 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 0

0 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 0

0 ⋯ 0

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

prediction
(𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃)

Generator

Predictor

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐺𝐺

Combined model (Generator + Predictor)

∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡),𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑟𝑟),𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑚𝑚)

GAN based PRNG for Embedded Processors
• Deploy only generator model

• The predictor is not required
to generate the random bit stream.

• Simple architecture for
resource-constrained environment.

Trained Generator

Edge
TPU

convert to

TensorFlow Lite

compile
&

deploy

IoT Device

GAN based PRNG for Embedded Processors
• Entropy for random seed

• The trained generator is a PRNG
with a fixed internal state.
 random seed with

sufficiently high entropy is required.

• Collected from IoT device.
(e.g. sensor data)

Trained Generator

Edge
TPU

convert to

TensorFlow Lite

compile
&

deploy

IoT Device

Entropy Random
seed

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

Random Bit Stream

inference

input

Comparison with the previous work

Visualization
• After training, the internal state changes.
• The generated bit stream is distributed without a pattern.

Visualization of random bit stream generated by the generator.
Before training (left) and after training (right).

NIST SP 800-22 : Randomness test for PRNG
• Improving the randomness of PRNG.

• In the previous work, tests such as frequency and cumulative sums
failed because they only used convolution layer.

final analysis report of NIST test suite ; (left) previous work, (right) this work.

NIST SP 800-22 : Randomness test for PRNG
• The failed test instance (𝐹𝐹𝐼𝐼/%) is reduced by about 1.91%.
• No failed p-value (𝐹𝐹𝑃𝑃) in this work.
• The failed individual test (𝐹𝐹%) is reduced by about 2.5%.

Unpredictability for CSPRNG
• Next bit test

• The 𝑚𝑚 + 1𝑡𝑡𝑡 bit cannot be predicted with the 𝑚𝑚-bit.
• The training process means this test, so if the loss is minimized,

the next bit will be unpredictable.

Unpredictability for CSPRNG
• State compromise attack resistance

• When the internal state of PRNG is known at some time,
the output can be predicted after or before.

• Reseed for each batch to ensure resistance.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑

Generator

reseed

• Execution environment
• The PRNGs on desktop : Intel Core i5-8259 CPU@2.30GHz x 8, 16GB.
• MPCG64 : STM32F4.
• This work : Edge TPU.

Comparison With Existing PRNGs

Conclusion and Future work
• Conclusion

• GAN based PRNG (DRBG) for embedded processors.
• High randomness validation through the NIST test suite.

• Future work
• Optimizing to maintain high randomness while being more efficient for

resource-constrained environments.
• Applying other GAN models for high randomness and efficiency.
• Designing a lightweight model through pruning.
• Efficient entropy collection.

Thank you for your attention!

	Generative Adversarial Networks-Based�Pseudo-Random Number Generator for�Embedded Processors
	Contents
	Motivation and Contribution
	Random Number Generator
	TensorFlow and TensorFlow Lite
	Edge TPU
	Previous GAN based PRNG Implementation
	System Configuration – Training & inference
	The generator model
	The predictor model
	The predictor model
	GAN based PRNG
	GAN based PRNG for Embedded Processors
	GAN based PRNG for Embedded Processors
	Comparison with the previous work
	Visualization
	NIST SP 800-22 : Randomness test for PRNG
	NIST SP 800-22 : Randomness test for PRNG
	Unpredictability for CSPRNG
	Unpredictability for CSPRNG
	Comparison With Existing PRNGs
	Conclusion and Future work
	Thank you for your attention!

