
Efficient Implementation of SHA-3 Hash Function 
on 8-bit AVR-based Sensor Nodes

YoungBeom Kim, Hojin Choi, Seog Chung Seo
Cryptography Optimization & Application Lab,

Department of Information Security, Cryptology, and 
Mathematics, Kookmin University

Cryptography Optimization & Application Lab



Contents

• Introduction

• Memory optimization

• Chaining optimization methodology

• Experimental result

• Conclusions

Cryptography Optimization & Application Lab



Introduction

Cryptography Optimization & Application Lab



Some Context
• Hash Function provides data integrity

• Fatal reverse attack has been filed against the existing SHA-2 Family

• The importance and demand of SHA-3 is increasing

• No single implementation method is more efficient than all others on ever possible platforms

• Existing efficient designs are usually hardware or specific architectures (Parallel system) oriented

• SHA-3 is a core algorithm used in MAC, digest, digital signature, DRBG, PQC, and so on.

• General software optimization method for various platforms is an important issue

• As 5G industry increases, a efficient implementation method of SHA-3 in embedded devices is important.

Cryptography Optimization & Application Lab



Overview of SHA-3
• Keccak algorithm selected to be next-generation hash function in SHA-3 competition held by NIST

• SHA-3 based on Sponge structure
• Absorbing  Process : Compressing message and updating internal state by 𝑓𝑓-function
• Squeezing Process : Computing digest 

Fig. 1: Overview of Sponge structure

Cryptography Optimization & Application Lab



Overview of SHA-3
• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of 𝑓𝑓-function is a three-dimensional 𝑥𝑥 × 𝑦𝑦 × 𝑧𝑧 matrix

• Row 𝑥𝑥 and Column 𝑦𝑦 are both fixed to five
• Consisting of 25 lanes

Fig. 2: State of SHA-3 

Cryptography Optimization & Application Lab



Overview of SHA-3
• 𝜃𝜃 process 

• XOR each bit in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with parties of two columns 
• XORing sum of columns ((𝑥𝑥 − 1),𝑧𝑧) and ((𝑥𝑥 + 1),(𝑧𝑧 − 1))

Alg. 1: Algorithm of 𝜃𝜃 process  Fig. 3: Overview of 𝜃𝜃 process  

Cryptography Optimization & Application Lab



Overview of SHA-3
• 𝜋𝜋 process 

• Rearranging the positions of the lanes
• Not changing value of lanes

Fig. 4: Overview of 𝜋𝜋 process  Fig. 5: Detail Structure of 𝜋𝜋 process 

Alg. 2: Algorithm of 𝜋𝜋 process 

Cryptography Optimization & Application Lab



Overview of SHA-3
• 𝜌𝜌 process 

• Right-rotating the bits of each lane as much as offset 
• Not changing position of lanes
• Implemented in combination with 𝜋𝜋 process in standard implementation method

Fig. 5: Overview of 𝜌𝜌 process  Alg. 3: Algorithm of 𝜌𝜌 process 

Cryptography Optimization & Application Lab



Overview of SHA-3
• 𝜒𝜒 process 

• XORing each bit with a nonlinear function of two other bits in its row
• Operating in row form

• 𝜄𝜄 process
• XORing Round-constant and S[12] of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
• Operating for single lane

Fig. 6: Overview of 𝜒𝜒 process  Alg. 4: Algorithm of 𝜒𝜒 process 

Cryptography Optimization & Application Lab



Standard Method
• The standard implementation method of SHA-3 follows as: 𝜃𝜃 → 𝜋𝜋~𝜌𝜌 → 𝜒𝜒~𝜄𝜄
• Combing 𝜋𝜋 process and 𝜌𝜌 process into 𝜋𝜋~𝜌𝜌 process
• Accessing 7 times to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 during 𝑓𝑓-function

• When b = 1600, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is 200 bytes and 𝑓𝑓-function comprise 24 round 
• Requiring 168 memory access to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒 during 𝑓𝑓-function

• Memory access cause higher overhead than arithmetic and logical operations in low-end-processor

Standard
Method Initial 𝜽𝜽 𝜽𝜽 process 𝝅𝝅~𝝆𝝆 process 𝝌𝝌~𝜾𝜾 process Total Access

Load O O O O
7 times

Store X O O O

Table. 1: Number of memory access to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in Standard Method

Cryptography Optimization & Application Lab



Memory Optimization

Cryptography Optimization & Application Lab



Memory Optimization
• Proposed implementation method of SHA-3 follows as:  𝜃𝜃~𝜌𝜌 (𝜋𝜋) → 𝜒𝜒~𝜄𝜄
• Implementing 𝝅𝝅 process implicitly in 𝜃𝜃~𝜌𝜌 process
• Combing 𝜃𝜃 process and 𝜌𝜌 process into 𝜃𝜃 ~𝜌𝜌 process
• Accessing 5 times to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 during 𝑓𝑓-function

• Requiring 120 memory access to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 during 𝑓𝑓-function
• Proposed Method : 120 <  Standard Method 168

• Reducing memory access twice compared to the standard implementation method

Proposed
Method Initial 𝜽𝜽 𝜽𝜽~𝝆𝝆 process 𝝅𝝅 process 𝝌𝝌~𝜾𝜾 process Total Access

Load O O X (Implicitly) O
5 times

Store X O X (Implicitly) O

Table. 2: Number of memory access to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in Proposed Method

Cryptography Optimization & Application Lab



Memory Optimization
• 𝜽𝜽 and 𝝆𝝆 process execute independent operation for lane

• Appling 𝝆𝝆 process before storing in 𝜽𝜽 process

• Appling 𝝅𝝅 process implicitly when updating state (store)
• 𝝅𝝅 process is a rearrange process for each lane
• 𝝅𝝅 process can be executed implicitly

• Memory address translation operation occurs only once
• 𝜽𝜽 and 𝝅𝝅~ 𝝆𝝆 process require twice translation in standard method
• Standard Method  : 𝜽𝜽 → 𝝅𝝅~𝝆𝝆; twice
• Proposed Method : 𝜽𝜽~𝝆𝝆 𝝅𝝅 ; once Fig. 7: Overview of Proposed Method

Cryptography Optimization & Application Lab



Chaining optimization  methodology

Cryptography Optimization & Application Lab



Target Platforms

• 8-bit AVR MCUs
• ATmega 128
• Popularly used in WSNs (Wireless Sensor Networks)

• Spec of ATmega 128
• Flash Memory : 128 KB
• SRAM : 4KB
• EEPROM : 4KB
• 32 8-bit general-purpose registers

Fig. 8: ATmega 128

Cryptography Optimization & Application Lab



Register Scheduling
• The generally used parameter is b = 1600, where the state is 200 bytes
• R8-R15 and R16-R23 hold two lanes
• R2-R5 are used to translate the memory address

• Initial 𝜽𝜽 and lanes of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Fig. 9: Register Scheduling for Proposed Method in 8-bit AVR MCUs

Cryptography Optimization & Application Lab



• To apply 𝝅𝝅 process implicitly, we propose a Chaining optimization methodology in 8-bit AVR
• Data Load to register (𝜽𝜽 process)  Memory translation in register (𝝅𝝅 process)  Data Store to Memory (𝝆𝝆 process)
• 𝜽𝜽~𝝆𝝆 (𝝅𝝅) process uses R8-R15, R16-R23 alternately  we call it “Chain Implementation”

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (200 bytes) cannot be held in the register  operating lane unit
• Here, memory address translation (cost 𝛼𝛼) is occurred  in each process
• Combining 𝜽𝜽~𝝆𝝆 process, memory address translation cost reduced to two times (4  2)

Standard
Method Initial 𝜽𝜽 𝜽𝜽 process 𝝅𝝅~𝝆𝝆

process

Load O + 𝛼𝛼 O + 𝛼𝛼 O + 𝛼𝛼

Store X O O + 𝛼𝛼

Proposed
Method Initial 𝜽𝜽 𝜽𝜽~𝝆𝝆

process 𝝅𝝅 process

Load O + 𝛼𝛼 O + 𝛼𝛼 X (Implicitly)

Store X O X (Implicitly)

Cryptography Optimization & Application Lab

Chaining optimization methodology



Chaining optimization methodology

Fig. 11: Proposed ImplementationTemp : Empty

State : S’ [0]

Cryptography Optimization & Application Lab



Temp : S’[4]

State : S’ [0]

Fig. 11: Proposed Implementation

Cryptography Optimization & Application Lab

Chaining optimization methodology



Temp : S’[4]

State : S’[14]

Fig. 11: Proposed Implementation

Cryptography Optimization & Application Lab

Chaining optimization methodology



Temp : S’[17]

State : S’[14]

Fig. 11: Proposed Implementation

Cryptography Optimization & Application Lab



Temp : S’[17]

State : S’[15]

Fig. 11: Proposed Implementation

Cryptography Optimization & Application Lab



Temp : S’[8]

State : S’[5]

Cryptography Optimization & Application Lab

Chaining optimization methodology



Experimental Result

Cryptography Optimization & Application Lab



• 25.7% performance improvement over Balasch et al.’s implementation
• Our Work is the fastest implementation of SHA-3 in 8-bit AVR microcontroller
• Narrowing the difference in performance by about two times compared to the SHA-2 Family

• Existing implementations have nearly three times the difference in performance

Experimental Result

Reference Algorithm Language
Length of message byte

50 byte 100 byte 500 byte

This Work SHA-3 (256-bit) Asm 2667
(+25.1%)

1333
(+25.7%)

1073
(+25.0%)

Otte et al. SHA-3 (256-bit) C, Asm 12854 6427 1672

Balasch et al. SHA-3 (256-bit) Asm 3560
(  - )

1795 
(  - )

1432
(  - )

Balasch et al. SHA-256 Asm 672 668 532

Balasch et al. Blake (256-bit) Asm 714 708 562

Balasch et al. Photon (256-bit) Asm 9723 7892 4788

Table. 3: Performance of SHA-3 by hash rate (CPB), when hashing a byte of various message in 8-bit AVR

Cryptography Optimization & Application Lab



Conclusion

Cryptography Optimization & Application Lab



• We introduced a new generic fast implementation method of SHA-3 

• Proposed Method not requires a lookup table or additional operations

• Proposed Chaining optimization methodology of SHA-3 is the fastest implementation

• Our Work is efficiently applicable in PQC, DRBG, MAC, and so on

• Our Work is a generic method that can be a applied to various platforms

Conclusion

Cryptography Optimization & Application Lab



Question?
Contact me : darania @ kookmin.ac.kr

Cryptography Optimization & Application Lab



Thank You~
Cryptography Optimization & Application Lab


	Efficient Implementation of SHA-3 Hash Function on 8-bit AVR-based Sensor Nodes�
	Contents
	Introduction
	Some Context
	Overview of SHA-3
	Overview of SHA-3
	Overview of SHA-3
	Overview of SHA-3
	Overview of SHA-3
	Overview of SHA-3
	Standard Method
	Memory Optimization
	Memory Optimization
	Memory Optimization
	Chaining optimization  methodology
	Target Platforms
	Register Scheduling
	Chaining optimization methodology
	Chaining optimization methodology
	Chaining optimization methodology
	Chaining optimization methodology
	슬라이드 번호 22
	슬라이드 번호 23
	Chaining optimization methodology
	Experimental Result
	Experimental Result
	Conclusion
	Conclusion
	Question?
	Thank You~

