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Some Context
• Hash Function provides data integrity

• Fatal reverse attack has been filed against the existing SHA-2 Family

• The importance and demand of SHA-3 is increasing

• No single implementation method is more efficient than all others on ever possible platforms

• Existing efficient designs are usually hardware or specific architectures (Parallel system) oriented

• SHA-3 is a core algorithm used in MAC, digest, digital signature, DRBG, PQC, and so on.

• General software optimization method for various platforms is an important issue

• As 5G industry increases, a efficient implementation method of SHA-3 in embedded devices is important.
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Overview of SHA-3
• Keccak algorithm selected to be next-generation hash function in SHA-3 competition held by NIST

• SHA-3 based on Sponge structure
• Absorbing  Process : Compressing message and updating internal state by 𝑓𝑓-function
• Squeezing Process : Computing digest 

Fig. 1: Overview of Sponge structure
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Overview of SHA-3
• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of 𝑓𝑓-function is a three-dimensional 𝑥𝑥 × 𝑦𝑦 × 𝑧𝑧 matrix

• Row 𝑥𝑥 and Column 𝑦𝑦 are both fixed to five
• Consisting of 25 lanes

Fig. 2: State of SHA-3 
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Overview of SHA-3
• 𝜃𝜃 process 

• XOR each bit in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with parties of two columns 
• XORing sum of columns ((𝑥𝑥 − 1),𝑧𝑧) and ((𝑥𝑥 + 1),(𝑧𝑧 − 1))

Alg. 1: Algorithm of 𝜃𝜃 process  Fig. 3: Overview of 𝜃𝜃 process  
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Overview of SHA-3
• 𝜋𝜋 process 

• Rearranging the positions of the lanes
• Not changing value of lanes

Fig. 4: Overview of 𝜋𝜋 process  Fig. 5: Detail Structure of 𝜋𝜋 process 

Alg. 2: Algorithm of 𝜋𝜋 process 

Cryptography Optimization & Application Lab



Overview of SHA-3
• 𝜌𝜌 process 

• Right-rotating the bits of each lane as much as offset 
• Not changing position of lanes
• Implemented in combination with 𝜋𝜋 process in standard implementation method

Fig. 5: Overview of 𝜌𝜌 process  Alg. 3: Algorithm of 𝜌𝜌 process 
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Overview of SHA-3
• 𝜒𝜒 process 

• XORing each bit with a nonlinear function of two other bits in its row
• Operating in row form

• 𝜄𝜄 process
• XORing Round-constant and S[12] of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
• Operating for single lane

Fig. 6: Overview of 𝜒𝜒 process  Alg. 4: Algorithm of 𝜒𝜒 process 
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Standard Method
• The standard implementation method of SHA-3 follows as: 𝜃𝜃 → 𝜋𝜋~𝜌𝜌 → 𝜒𝜒~𝜄𝜄
• Combing 𝜋𝜋 process and 𝜌𝜌 process into 𝜋𝜋~𝜌𝜌 process
• Accessing 7 times to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 during 𝑓𝑓-function

• When b = 1600, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is 200 bytes and 𝑓𝑓-function comprise 24 round 
• Requiring 168 memory access to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒 during 𝑓𝑓-function

• Memory access cause higher overhead than arithmetic and logical operations in low-end-processor

Standard
Method Initial 𝜽𝜽 𝜽𝜽 process 𝝅𝝅~𝝆𝝆 process 𝝌𝝌~𝜾𝜾 process Total Access

Load O O O O
7 times

Store X O O O

Table. 1: Number of memory access to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in Standard Method
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Memory Optimization
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Memory Optimization
• Proposed implementation method of SHA-3 follows as:  𝜃𝜃~𝜌𝜌 (𝜋𝜋) → 𝜒𝜒~𝜄𝜄
• Implementing 𝝅𝝅 process implicitly in 𝜃𝜃~𝜌𝜌 process
• Combing 𝜃𝜃 process and 𝜌𝜌 process into 𝜃𝜃 ~𝜌𝜌 process
• Accessing 5 times to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 during 𝑓𝑓-function

• Requiring 120 memory access to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 during 𝑓𝑓-function
• Proposed Method : 120 <  Standard Method 168

• Reducing memory access twice compared to the standard implementation method

Proposed
Method Initial 𝜽𝜽 𝜽𝜽~𝝆𝝆 process 𝝅𝝅 process 𝝌𝝌~𝜾𝜾 process Total Access

Load O O X (Implicitly) O
5 times

Store X O X (Implicitly) O

Table. 2: Number of memory access to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in Proposed Method
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Memory Optimization
• 𝜽𝜽 and 𝝆𝝆 process execute independent operation for lane

• Appling 𝝆𝝆 process before storing in 𝜽𝜽 process

• Appling 𝝅𝝅 process implicitly when updating state (store)
• 𝝅𝝅 process is a rearrange process for each lane
• 𝝅𝝅 process can be executed implicitly

• Memory address translation operation occurs only once
• 𝜽𝜽 and 𝝅𝝅~ 𝝆𝝆 process require twice translation in standard method
• Standard Method  : 𝜽𝜽 → 𝝅𝝅~𝝆𝝆; twice
• Proposed Method : 𝜽𝜽~𝝆𝝆 𝝅𝝅 ; once Fig. 7: Overview of Proposed Method
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Chaining optimization  methodology
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Target Platforms

• 8-bit AVR MCUs
• ATmega 128
• Popularly used in WSNs (Wireless Sensor Networks)

• Spec of ATmega 128
• Flash Memory : 128 KB
• SRAM : 4KB
• EEPROM : 4KB
• 32 8-bit general-purpose registers

Fig. 8: ATmega 128
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Register Scheduling
• The generally used parameter is b = 1600, where the state is 200 bytes
• R8-R15 and R16-R23 hold two lanes
• R2-R5 are used to translate the memory address

• Initial 𝜽𝜽 and lanes of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Fig. 9: Register Scheduling for Proposed Method in 8-bit AVR MCUs
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• To apply 𝝅𝝅 process implicitly, we propose a Chaining optimization methodology in 8-bit AVR
• Data Load to register (𝜽𝜽 process)  Memory translation in register (𝝅𝝅 process)  Data Store to Memory (𝝆𝝆 process)
• 𝜽𝜽~𝝆𝝆 (𝝅𝝅) process uses R8-R15, R16-R23 alternately  we call it “Chain Implementation”

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (200 bytes) cannot be held in the register  operating lane unit
• Here, memory address translation (cost 𝛼𝛼) is occurred  in each process
• Combining 𝜽𝜽~𝝆𝝆 process, memory address translation cost reduced to two times (4  2)

Standard
Method Initial 𝜽𝜽 𝜽𝜽 process 𝝅𝝅~𝝆𝝆

process

Load O + 𝛼𝛼 O + 𝛼𝛼 O + 𝛼𝛼

Store X O O + 𝛼𝛼

Proposed
Method Initial 𝜽𝜽 𝜽𝜽~𝝆𝝆

process 𝝅𝝅 process

Load O + 𝛼𝛼 O + 𝛼𝛼 X (Implicitly)

Store X O X (Implicitly)
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Chaining optimization methodology

Fig. 11: Proposed ImplementationTemp : Empty

State : S’ [0]
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Temp : S’[4]

State : S’ [0]

Fig. 11: Proposed Implementation
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Temp : S’[4]

State : S’[14]

Fig. 11: Proposed Implementation
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Temp : S’[17]

State : S’[14]

Fig. 11: Proposed Implementation
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Temp : S’[17]

State : S’[15]

Fig. 11: Proposed Implementation
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Temp : S’[8]

State : S’[5]
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Experimental Result
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• 25.7% performance improvement over Balasch et al.’s implementation
• Our Work is the fastest implementation of SHA-3 in 8-bit AVR microcontroller
• Narrowing the difference in performance by about two times compared to the SHA-2 Family

• Existing implementations have nearly three times the difference in performance

Experimental Result

Reference Algorithm Language
Length of message byte

50 byte 100 byte 500 byte

This Work SHA-3 (256-bit) Asm 2667
(+25.1%)

1333
(+25.7%)

1073
(+25.0%)

Otte et al. SHA-3 (256-bit) C, Asm 12854 6427 1672

Balasch et al. SHA-3 (256-bit) Asm 3560
(  - )

1795 
(  - )

1432
(  - )

Balasch et al. SHA-256 Asm 672 668 532

Balasch et al. Blake (256-bit) Asm 714 708 562

Balasch et al. Photon (256-bit) Asm 9723 7892 4788

Table. 3: Performance of SHA-3 by hash rate (CPB), when hashing a byte of various message in 8-bit AVR
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Conclusion
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• We introduced a new generic fast implementation method of SHA-3 

• Proposed Method not requires a lookup table or additional operations

• Proposed Chaining optimization methodology of SHA-3 is the fastest implementation

• Our Work is efficiently applicable in PQC, DRBG, MAC, and so on

• Our Work is a generic method that can be a applied to various platforms

Conclusion
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Question?
Contact me : darania @ kookmin.ac.kr
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Thank You~
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