The 23rd Annual International Conference on Information Security and Cryptology

ICISC 2020

December 2 (Wed) ~ December 4 (Fri), 2020 | Virtual Conference

Hosted by

Korea Institute of Information Security and Cryptology (KIISC) National Security Research Institute (NSR)

Curve448 on 32-bit ARM Cortex-M4

Hwajeong Seo, Reza Azarderakhsh

Hansung University,

Florida Atlantic University,

PQSecure Technologies, LLC

Korea Institute of Information Security & Cryptology

Contents

- Introduction
- Related Work
- Curve448 on M4
- Evaluation
- Conclusion

Introduction

- Public key cryptography
 - Key exchange and digital signature protocols
- Challenge: implementation of PKC on low-end microcontrollers
 - Low-end microcontrollers: low energy, performance, and memory
 - Efficiency of ECC: compact implementation of finite field arithmetic & group operations

Motivation

Importance of Curve448

- 224-bit security for ECDH.
- Favored by IRTF CFRG for TLS standards along with Curve25519.
- Confirmed in FIPS 186-5 (US federal government).
- However, the implementation of Curve448 has not been actively conducted.

Few Curve448 works on 32-bit ARM Cortex-M4

- Widely used in practice (Relatively powerful computational ability: ALU, frequency, RAM, and ROM)
- Recommended by NIST post-quantum cryptography

Contribution

- First implementation of Curve448 on 32-bit ARM Cortex-M4
- Secure and efficient implementation of primitive operations
- In-depth comparison of pre-quantum and post-quantum cryptography
- First Curve448 on ARM Cortex-M4 as an open source https://github.com/solowal/DEVELOP/tree/master/Source%20Code/ICISC'20

Related Work

- Target curve: Curve448
 - Edwards curve provides complete addition formulas.
 - Faster and simpler than traditional NIST curves.
 - Curve448 satisfies the requirement of SafeCurves.
 - ECC standanrds of TLS 1.3

Related Work

- Target microcontroller: 32-bit ARM Cortex-M4
 - Small and energy-efficient ARM processor
 - ARMv7E-M instruction set (Thumb-2 and DSP extensions)
 - 3-stage pipeline with branch speculation
 - 16 32-bit registers (R0~R15)
 - Powerful single-cycle multiply and multiply-and-accumulate instructions
 - UMAAL D, C, A, B : $\{D|C\} \leftarrow A \times B + C + D$

Previous Implementations

- Curve448 (224-bit security) implementation
 - 8-bit AVR (103,228,541 cc) and 16-bit MSP430 (73,477,660 cc)
 - No works on ARM Cortex-M4 (only Curve25519; 128-bit security)
 - For long term security, Curve448 should be considered.
- First Curve448 implementation on 32-bit ARM Cortex-M4

Hierarchy of ECC implementation

Finite field operation

- Finite field addition/subtraction
- Finite field multiplication
- Finite field inversion

Group operation

- Point addition
- Point doubling

- Point multiplication
 - Montgomery ladder

- Finite field addition
 - Integer addition → modular reduction
 - Process of (masked) finite field addition

1. Carry | C

 \leftarrow A + B

(Integer addition)

2. Mask

 $\leftarrow 0 - carry$

(Mask is 0 or 0xFFFFFFF)

Masked modulus ← mask & modulus

4. Result

← C – masked modulus

- Finite field multiplication
 - Integer multiplication (operand caching) → modular reduction

- Finite field multiplication
 - Integer multiplication (operand caching w/ width 4; CANS'19)
 - → modular reduction


```
LDR
        R6, [R0, #4*4]
                           //Loading operand B[4] from memory
LDR
        R1, [SP, #4*4]
                           //Loading result C[4] from memory
UMAAL
        R14, R10, R5, R7
                           //Partial product (B[1]*A[3])
        R14, R11, R4, R8
UMAAL
                           //Partial product (B[2]*A[2])
UMAAL
        R14, R12, R3, R9
                           //Partial product (B[3]*A[1])
        R1, R14, R2, R6
UMAAL
                           //Partial product (B[4]*A[0])
```

- 1. Intermediate result is stored in STACK.
- 2. The result in STACK is directly reduced.

- Finite field multiplication
 - Integer multiplication -> modular reduction
 - Fast reduction on Curve448 (ETRI Journal'19): 8 x 224-bit ADD

```
Require: 896-bit intermediate result A (A[3]~A[0] in 224-bit)

Ensure: 448-bit result C (C[1]||C[0] in 224-bit)

1: \varepsilon 0||T \leftarrow A[2]+A[3]

2: \varepsilon 1||C[0] \leftarrow A[0]+\varepsilon 0||T

3: \varepsilon 2||C[1] \leftarrow A[1]+A[3]+\varepsilon 0||T

4: \varepsilon 3||C[0] \leftarrow C[0]+\varepsilon 2

5: \varepsilon 4||C[1] \leftarrow C[1]+(\varepsilon 1+\varepsilon 2+\varepsilon 3)

6: \varepsilon 5||C[0] \leftarrow C[0]+\varepsilon 4

7: C[1] \leftarrow C[1]+(\varepsilon 4+\varepsilon 5)

8: return C
```


- Finite field inversion
 - Prime of Curve448: $p = 2^{448} 2^{224} 1$
 - Fermat's theorem (computation of inversion; $a = z^{-1} \equiv z^{2^{448}-2^{224}-3} \mod p$)
 - Inversion
 - 447 squaring + 13 multiplication

```
Require: Integer z satisfying 1 \le z \le p-1.
Ensure: Inverse t_7 = z^{p-2} \mod p = z^{-1} \mod p.
  1: z_3 \leftarrow z^{2^1} \cdot z
                                                                                                                                     \{ cost: 1S+1M \}
  2: t_0 \leftarrow z_3^{2^2} \cdot z_3
                                                                                                                                      \{ cost: 2S+1M \}
 3: t_1 \leftarrow t_0^{2^1} \cdot z
                                                                                                                                     \{ cost: 1S+1M \}
  4: t_2 \leftarrow t_1^{2^4} \cdot t_0
                                                                                                                                     \{ cost: 4S+1M \}
  5: t_3 \leftarrow t_2^{2^9} \cdot t_2
                                                                                                                                     \{ cost: 9S+1M \}
  6: t_4 \leftarrow (t_3^{2^{18}} \cdot t_3)^2 \cdot z
                                                                                                                                   \{ cost: 19S+2M \}
 7: t_{5} \leftarrow (t_{4}^{2^{37}} \cdot t_{4})^{2^{37}} \cdot t_{4}

8: t_{6} \leftarrow t_{5}^{2^{111}} \cdot t_{5}

9: t_{7} \leftarrow (t_{6}^{2^{1}} \cdot z^{2^{223}} \cdot t_{6})^{2^{2}} \cdot z
                                                                                                                                    \{ cost: 74S+2M \}
                                                                                                                                 \{ cost: 111S+1M \}
                                                                                                                                \{ cost: 226S+3M \}
10: return t_7
```


- Group operation
 - Point addition and doubling in extended projective coordinates

Point multiplication

Montgomery ladder algorithm

```
Require: Point P1 = (x1, y1, z1, e1, h1) in extended projective coordinates, Point
    P2 = (u2, v2, w2) in extended affine coordinates
Ensure: P3 = (x3, y3, z3, e3, h3) in extended projective coordinates
 1: t1 \leftarrow e1 \cdot h1
 2: e3 \leftarrow y1 - x1
 3: h3 \leftarrow y1 + x1
 4: x3 \leftarrow e3 \cdot v2
                                                                          \{A = (y1 - x1) \cdot (y2 - x2)\}\
 5: y3 \leftarrow h3 \cdot u2
                                                                          \{B = (y1 + x1) \cdot (y2 + x2)\}\
 6: e3 \leftarrow y3 - x3
                                                                                            \{E = B - A\}
                                                                                            \{H = B + A\}
 7: h3 \leftarrow y3 + x3
 8: x3 \leftarrow t1 \cdot w2
                                                                                            \{C = t1 \cdot w2\}
 9: t1 \leftarrow z1 - x3
                                                                                            \{F = z1 - C\}
10: x3 \leftarrow z1 + x3
                                                                                            \{G = z1 + C\}
11: z3 \leftarrow t1 \cdot x3
                                                                                            \{Z3 = F \cdot G\}
12: u3 \leftarrow x3 \cdot h3
                                                                                           \{Y3 = G \cdot H\}
13: x3 \leftarrow e3 \cdot t1
                                                                                           \{X3 = E \cdot F\}
14: return P3(x3, y3, z3, e3, h3)
```

```
Require: Point P1 = (x1, y1, z1, e1, h1) in extended projective coordinates
Ensure: P3 = (x3, y3, z3, e3, h3) in extended projective coordinates
 1: e3 \leftarrow x1 \cdot x1
                                                                                                \{A = x1 \cdot x1\}
 2: h3 \leftarrow y1 \cdot y1
                                                                                                \{B = y1 \cdot y1\}
 3: t1 \leftarrow e3 - h3
                                                                                                \{G = A - B\}
 4: h3 \leftarrow e3 + h3
                                                                                                \{H = A + B\}
  5: x3 \leftarrow x1 + y1
 6: e3 \leftarrow x3 \cdot x3
 7: e3 \leftarrow h3 - e3
                                                                      {E = H - (x1 + y1) \cdot (x1 + y1)}
 8: y3 \leftarrow z1 \cdot z1
 9: y3 \leftarrow 2 \cdot y3
                                                                                           \{C := 2 \cdot z1 \cdot z1\}
10: y3 \leftarrow t1 + y3
                                                                                               {F := G + C}
11: x3 \leftarrow e3 \cdot y3
                                                                                               \{X3 := E \cdot F\}
12: z3 \leftarrow y3 \cdot t1
                                                                                               \{Z3 := F \cdot G\}
13: y3 \leftarrow t1 \cdot h3
                                                                                               \{ Y3 := G \cdot H \}
14: return P3(x3, y3, z3, e3, h3)
```


Evaluation

Frequency	Finite field operation				Group operation		
	Addition	Subtraction	Multiplication	Inversion	Addition	Doubling	Point multiplication
24 MHz	164	161	821	363,485	6,566	6,567	6,218,135
168 MHz	181	172	838	363,626	6,686	6,674	6,285,904

Experiment setting

- STM32F4 discovery board
- GCC -O3
- Two frequencies (24MHz and 168MHz)

Evaluation on low frequency (24MHz)

- Avoid wait cycles due to the speed of the memory controller
- Ensure the correct clock cycles

Evaluation

Method	128-bit s	224-bit security	
Method	Curve25519	FourQ	Curve448
Groot	1,816,351	-	-
Santis and Sigl	1,563,852	-	-
Fujii and Aranha	907,240	-	-
Haase and Labrique	847,048	-	-
Liu et al.	-	542,900	_
This work	-	-	6,218,135

Curve448 is 86% and 91% slower than Curve25519 and FourQ.

Masked implementation	Early termination prevention	Montgomery ladder	w/o look-up table
Ο	Ο	Ο	Ο

- ECC implementations in constant timing.
 - Avoiding conditional branch and cache access.

Hybrid Post-Quantum TLS

Classical TLS 1.2	Hybrid Post-Quantum TLS 1.2
premaster_secret = ECDHE_KEY	premaster_secret = ECDHE_KEY PQ_KEY
seed = "master secret"	seed = "hybrid master secret"
ClientHello.random	ClientHello.random
ServerHello.random	ServerHello.random
master_secret = HMAC (premaster_secret, seed)	master_secret = HMAC (premaster_secret, seed)

Advantage of hybrid PQ TLS

- Two independent key exchanges (classical and post-quantum).
- Both keys are combined into a single TLS master secret.
- Hybrid PQ TLS is still secure when one of key exchanges is compromised.
- e.g. Amozon AWS evaluated ECDH w/ BIKE, SIKE.

Hybrid Post-Quantum TLS

CIVE: A24	Timings [second]				
SIKEp434	KeyGen	Encaps	Decaps	Total	
IEEE TC'20	0.32	0.53	0.56	1.09	

Performance comparison of Hybrid PQ TLS

• Curve25519 (0.01 sec) + SIKE434 (1.09 sec) → 1.1 sec 109x slower

• FourQ (0.006 sec) + SIKE434 (1.09 sec) → 1.096 sec 181.6x slower

• Curve448 (0.074 sec) + SIKE434 (1.09 sec) → 1.164 sec 14.7x slower

Conclusion

- First implementation of Curve448 on ARM Cortex-M4
 - Point multiplication in 6,218,135 clock cycles
 - → practically fast enough for M4@168 MHz
 - Secure implementation against timing attacks
- Future work
 - Practical implementation of hybrid post-quantum TLS on low-end IoT

The 23rd Annual International Conference on Information Security and Cryptology

ICISC 2020

December 2 (Wed) - December 4 (Fri), 2020 | Virtual Conference

Q&A

