
Curve448 on 32-bit
ARM Cortex-M4

Hwajeong Seo, Reza Azarderakhsh
Hansung University,

Florida Atlantic University,
PQSecure Technologies, LLC

Contents
• Introduction

• Related Work

• Curve448 on M4

• Evaluation

• Conclusion

Introduction
• Public key cryptography

• Key exchange and digital signature protocols

• Challenge: implementation of PKC on low-end
microcontrollers

• Low-end microcontrollers: low energy, performance, and memory

• Efficiency of ECC:
compact implementation of finite field arithmetic & group operations

Motivation
• Importance of Curve448

• 224-bit security for ECDH.
• Favored by IRTF CFRG for TLS standards along with Curve25519.
• Confirmed in FIPS 186-5 (US federal government).
• However, the implementation of Curve448 has not been actively conducted.

• Few Curve448 works on 32-bit ARM Cortex-M4
• Widely used in practice

(Relatively powerful computational ability: ALU, frequency, RAM, and ROM)

• Recommended by NIST post-quantum cryptography

Contribution
• First implementation of Curve448 on 32-bit ARM Cortex-M4

• Secure and efficient implementation of primitive operations

• In-depth comparison of pre-quantum and post-quantum cryptography

• First Curve448 on ARM Cortex-M4 as an open source
https://github.com/solowal/DEVELOP/tree/master/Source%20Code/ICISC'20

https://github.com/solowal/DEVELOP/tree/master/Source%20Code/ICISC'20

Related Work
• Target curve: Curve448

• Edwards curve provides complete addition formulas.
• Faster and simpler than traditional NIST curves.
• Curve448 satisfies the requirement of SafeCurves.
• ECC standanrds of TLS 1.3

Related Work
• Target microcontroller: 32-bit ARM Cortex-M4

• Small and energy-efficient ARM processor

• ARMv7E-M instruction set (Thumb-2 and DSP extensions)

• 3-stage pipeline with branch speculation

• 16 32-bit registers (R0~R15)

• Powerful single-cycle multiply and multiply-and-accumulate instructions

• UMAAL D, C, A, B : {D|C}  A X B + C + D

Previous Implementations
• Curve448 (224-bit security) implementation

• 8-bit AVR (103,228,541 cc) and 16-bit MSP430 (73,477,660 cc)

• No works on ARM Cortex-M4 (only Curve25519; 128-bit security)

• For long term security, Curve448 should be considered.

• First Curve448 implementation on 32-bit ARM Cortex-M4

Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4

• Hierarchy of ECC implementation

• Finite field operation
• Finite field addition/subtraction
• Finite field multiplication
• Finite field inversion

• Group operation
• Point addition
• Point doubling

• Point multiplication
• Montgomery ladder

Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4

• Finite field addition
• Integer addition  modular reduction

• Process of (masked) finite field addition
1. Carry | C  A + B (Integer addition)

2. Mask  0 – carry (Mask is 0 or 0xFFFFFFFF)

3. Masked modulus  mask & modulus

4. Result  C – masked modulus

Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4

• Finite field multiplication
• Integer multiplication (operand caching)  modular reduction

Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4

• Finite field multiplication
• Integer multiplication (operand caching w/ width 4; CANS’19)
 modular reduction

1. Intermediate result is stored in STACK.

2. The result in STACK is directly reduced.

Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4

• Finite field multiplication
• Integer multiplication  modular reduction
• Fast reduction on Curve448 (ETRI Journal’19): 8 x 224-bit ADD

Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4

• Finite field inversion
• Prime of Curve448: 𝑝𝑝 = 2448 − 2224 − 1

• Fermat’s theorem
(computation of inversion; 𝑎𝑎 = 𝑧𝑧−1 ≡ 𝑧𝑧2448−2224−3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)

• Inversion
• 447 squaring + 13 multiplication

Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4

• Group operation
• Point addition and doubling in extended projective coordinates

• Point multiplication
• Montgomery ladder algorithm

Evaluation

• Experiment setting
• STM32F4 discovery board
• GCC –O3
• Two frequencies (24MHz and 168MHz)

• Evaluation on low frequency (24MHz)
• Avoid wait cycles due to the speed of the memory controller
• Ensure the correct clock cycles

Frequency
Finite field operation Group operation

Addition Subtraction Multiplication Inversion Addition Doubling Point multiplication

24 MHz 164 161 821 363,485 6,566 6,567 6,218,135

168 MHz 181 172 838 363,626 6,686 6,674 6,285,904

Evaluation

• Curve448 is 86% and 91% slower than Curve25519 and FourQ.

Method
128-bit security 224-bit security

Curve25519 FourQ Curve448

Groot 1,816,351 - -

Santis and Sigl 1,563,852 - -

Fujii and Aranha 907,240 - -

Haase and Labrique 847,048 - -

Liu et al. - 542,900 -

This work - - 6,218,135

Masked implementation Early termination prevention Montgomery ladder w/o look-up table

O O O O

• ECC implementations in constant timing.
• Avoiding conditional branch and cache access.

Hybrid Post-Quantum TLS

• Advantage of hybrid PQ TLS
• Two independent key exchanges (classical and post-quantum).
• Both keys are combined into a single TLS master secret.
• Hybrid PQ TLS is still secure when one of key exchanges is compromised.
• e.g. Amozon AWS evaluated ECDH w/ BIKE, SIKE.

Classical TLS 1.2 Hybrid Post-Quantum TLS 1.2

premaster_secret = ECDHE_KEY
seed = “master secret”
|| ClientHello.random
|| ServerHello.random

master_secret = HMAC (premaster_secret, seed)

premaster_secret = ECDHE_KEY || PQ_KEY
seed = “hybrid master secret”

|| ClientHello.random
|| ServerHello.random

master_secret = HMAC (premaster_secret, seed)

Hybrid Post-Quantum TLS

• Performance comparison of Hybrid PQ TLS

• Curve25519 (0.01 sec) + SIKE434 (1.09 sec)  1.1 sec
109x slower

• FourQ (0.006 sec) + SIKE434 (1.09 sec)  1.096 sec
181.6x slower

• Curve448 (0.074 sec) + SIKE434 (1.09 sec)  1.164 sec
14.7x slower

SIKEp434
Timings [second]

KeyGen Encaps Decaps Total

IEEE TC’20 0.32 0.53 0.56 1.09

Conclusion
• First implementation of Curve448 on ARM Cortex-M4

• Point multiplication in 6,218,135 clock cycles
 practically fast enough for M4@168 MHz

• Secure implementation against timing attacks

• Future work
• Practical implementation of hybrid post-quantum TLS on low-end IoT

Q & A

	Curve448 on 32-bit ARM Cortex-M4
	Contents
	Introduction
	Motivation
	Contribution
	Related Work
	Related Work
	Previous Implementations
	Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4
	Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4
	Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4
	Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4
	Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4
	Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4
	Optimization Techniques for Curve448 on 32-bit ARM Cortex-M4
	Evaluation
	Evaluation
	Hybrid Post-Quantum TLS
	Hybrid Post-Quantum TLS
	Conclusion
	Q & A

