The 23rd Annual International Conference on Information Security and Cryptology

ICISC 2020

December 2 (Wed) ~ December 4 (Fri), 2020 | Virtual Conference

Hosted by

Korea Institute of Information Security and Cryptology (KIISC) National Security Research Institute (NSR)

PIPO: A Lightweight Block cipher with Efficient Higher-Order Masking Software Implementations

Hangi Kim, Yongjin Jeon, Giyoon Kim, Jongsung Kim, Bo-Yeon Sim, Dong-Guk Han, Hwajeong Seo, Seonggyeom Kim, Seokhie Hong, Jaechul Sung, and Deukjo Hong

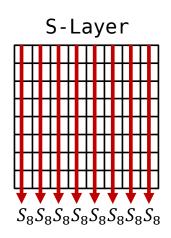
> Kookmin University, Hansung University, Korea University, University of Seoul and Chonbuk National University

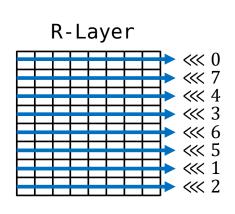
Introduction (Motivations)

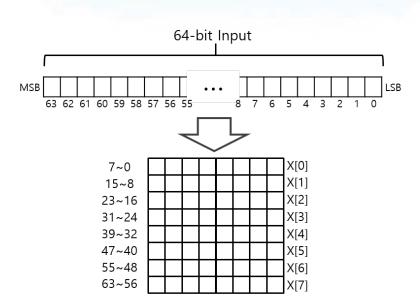
- Although a block cipher is secure to the classical cryptanalysis, it is necessary to apply the side-channel countermeasures.
- Increasing environments that requiring side-channel countermeasures.
- There are many lightweight block ciphers proposed, but there are very few block ciphers considering the efficiency of implementing higher-order Masking while simultaneously having excellent S/W and H/W implementation performance.

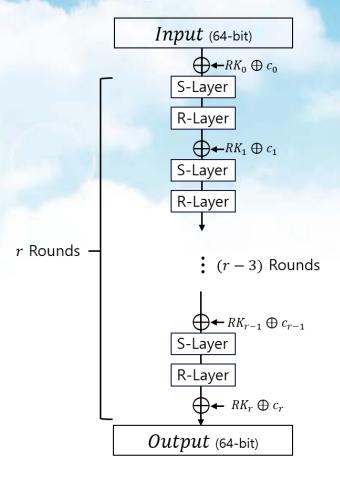
Introduction (Key Considerations of PIPO)

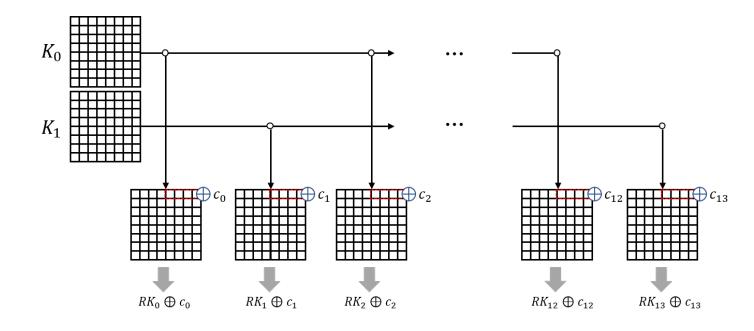
- Side-channel countermeasure applied environment (Plug-In, PI)
 - The less the number of nonlinear operation is used, the less reduction in efficiency when applying the side-channel countermeasure technique.
 - Linear operations: O(d), nonlinear operations: $O(d^2)$ (d is the number of operations)
- General S/W, H/W implementation environment (Plug-Out, PO)
 - Design for application in ultra-light environments
 - Execution time, RAM, Area, etc.



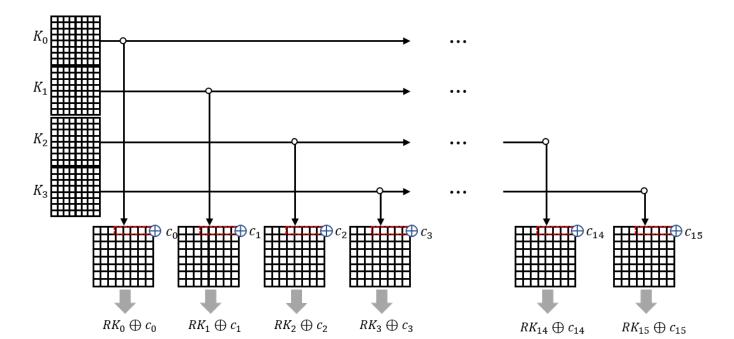

Introduction (Contributions)


- New lightweight 8-bit S-box
 - It offers an efficient bitsliced implementation including only 11 nonlinear bitwise operations.
 - Both DBN and LBN are 3.
- PIPO can be implemented using fewer nonlinear operations than other block ciphers.
- PIPO has excellent performance on S/W and H/W implementations


- SbPN (S-box bit-Permutation Network) structure
 - Using 8-bit S-box, 8-bit rotations



- Key schedules (128-bit key)
 - $K = (K_1 | | K_0)$, K_0 , K_1 are 64-bit respectively, K_0 is the lower 64-bit.
 - Use $RK_0 \sim RK_{13}$ $(RK_i = K_{i \pmod{2}})$


•
$$c_i = i$$

- Key schedules (256-bit key)
 - $K = (K_3||K_2||K_1||K_0)$, K_0 , K_1 , K_2 , K_3 are 64-bit respectively, K_0 is the lower 64-bit.
 - Use $RK_0 \sim RK_{15}$ $(RK_i = K_{i \pmod{4}})$

•
$$c_i = i$$

December 2 (Wed) - December 4 (Fri), 2020 | Virtual Conference

Specification of PIPO

New lightweight S-box, S₈

Right (low-order) 4-bit

		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	0x5E	0xF9	0xFC	0x00	0x3F	0x85	0xBA	0x5B	0x18	0x37	0xB2	0xC6	0x71	0xC3	0x74	0x9D
	1	0xA7	0x94	0x0D	0xE1	0xCA	0x68	0x53	0x2E	0x49	0x62	0xEB	0x97	0xA4	0x0E	0x2D	0xD0
	2	0x16	0x25	0xAC	0x48	0x63	0xD1	0xEA	0x8F	0xF7	0x40	0x45	0xB1	0x9E	0x34	0x1B	0xF2
	3	0xB9	0x86	0x03	0x7F	0xD8	0x7A	0xDD	0x3C	0xE0	0xCB	0x52	0x26	0x15	0xAF	0x8C	0x69
	4	0xC2	0x75	0x70	0x1C	0x33	0x99	0xB6	0xC7	0x04	0x3B	0xBE	0x5A	0xFD	0x5F	0xF8	0x81
(high-order) 4-bit	5	0x93	0xA0	0x29	0x4D	0x66	0xD4	0xEF	0x0A	0xE5	0xCE	0x57	0xA3	0x90	0x2A	0x09	0x6C
	6	0x22	0x11	0x88	0xE4	0xCF	0x6D	0x56	0xAB	0x7B	0xDC	0xD9	0xBD	0x82	0x38	0x07	0x7E
	7	0xB5	0x9A	0x1F	0xF3	0x44	0xF6	0x41	0x30	0x4C	0x67	0xEE	0x12	0x21	0x8B	0xA8	0xD5
	8	0x55	0x6E	0xE7	0x0B	0x28	0x92	0xA1	0xCC	0x2B	0x08	0x91	0xED	0xD6	0x64	0x4F	0xA2
	9	0xBC	0x83	0x06	0xFA	0x5D	0xFF	0x58	0x39	0x72	0xC5	0xC0	0xB4	0x9B	0x31	0x1E	0x77
	Α	0x01	0x3E	0xBB	0xDF	0x78	0xDA	0x7D	0x84	0x50	0x6B	0xE2	0x8E	0xAD	0x17	0x24	0xC9
Left	В	0xAE	0x8D	0x14	0xE8	0xD3	0x61	0x4A	0x27	0x47	0xF0	0xF5	0x19	0x36	0x9C	0xB3	0x42
_	С	0x1D	0x32	0xB7	0x43	0xF4	0x46	0xF1	0x98	0xEC	0xD7	0x4E	0xAA	0x89	0x23	0x10	0x65
	D	0x8A	0xA9	0x20	0x54	0x6F	0xCD	0xE6	0x13	0xDB	0x7C	0x79	0x05	0x3A	0x80	0xBF	0xDE
	Е	0xE9	0xD2	0x4B	0x2F	0x0C	0xA6	0x95	0x60	0x0F	0x2C	0xA5	0x51	0x6A	0xC8	0xE3	0x96
	F	0xB0	0x9F	0x1A	0x76	0xC1	0x73	0xC4	0x35	0xFE	0x59	0x5C	0xB8	0x87	0x3D	0x02	0xFB

8-bit S-box Table

```
//(MSb: x[7], LSb: x[0]) :"b" represents bit
// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]
// S5_1
x[5] ^= (x[7] & x[6]);
x[4] ^= (x[3] & x[5]);
x[7] ^= x[4];
x[6] ^= x[3];
x[3] ^= (x[4] | x[5]);
x[5] ^= x[7];
x[4] ^= (x[5] & x[6]);
// S3
x[2] = x[1] & x[0];
x[0] = x[2] | x[1];
x[1] = x[2] | x[0];
x[2] = x[2];
// Extend XOR
x[7] ^= x[1]; x[3] ^= x[2]; x[4] ^= x[0];
//S5_2
t[0] = x[7]; t[1] = x[3]; t[2] = x[4];
x[6] = (t[0] & x[5]);
t[0] = x[6];
x[6] = (t[2] | t[1]);
t[1] ^= x[5];
x[5] ^= (x[6] | t[2]);
t[2] = (t[1] & t[0]);
// truncate XOR and swap
x[2] = t[0]; t[0] = x[1] = t[2]; x[1] = x[0] t[1];
x[0] = x[7]; x[7] = t[0];
t[1] = x[3]; x[3] = x[6]; x[6] = t[1];
t[2] = x[4]; x[4] = x[5]; x[5] = t[2];
// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]
```

The bitsliced implementation of the S_8 (in C code)

- Advantages of S_8
 - Bitslice implementation
 - Small number of nonlinear operations
 - Efficient high-order Masking
 - Both DBN and LBN are 3
 - ➤ Secure cryptographic security

Comparison of bitslice 8-bit S-boxes

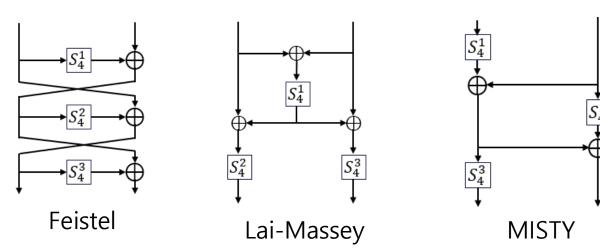
Blockcipher	PIPO	FLY	Fantomas	Robin	LILLIPUT
Differential uniformity	16	16	16	16	8
DBN	3	3	2	2	2
Non-linearity	96	96	96	96	96
LBN	3	3	2	2	2
Algebraic degree	5	5	5	6	6
#(Fixed points)	0	2	0	16	1
#(Nonlinear operations)	11	12	11	12	12
#(Linear operations)	23	24	27	24	27
Construction method	*U-bridge	Lai-Massey	$*U ext{-MISTY}$	MISTY	Feistel
Reference	This paper	[41]	[35]	[35]	[1]

^{*&#}x27;U-' represents 'Unbalanced-'.

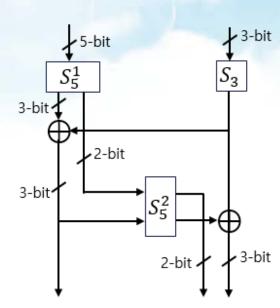
^{**}Nonlinear (resp. linear) operations represent AND, OR (resp. XOR, NOT).

Design Rationales of S-box (three criteria of S_8)

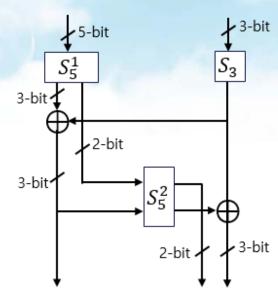
- 1. It should lower an efficient bitsliced implementation including 11 or fewer nonlinear operations.
- 2. Its differential and linear branch numbers (DBN and LBN) should both be greater than 2.
- 3. Its differential uniformity should be 16 or less, and its nonlinearity should be 96 or more.
- Additional conditions: No fixed point, less linear operations


- Algebraic method
 - Cryptographic Security guaranteed
 - Difficult to find efficient bitsliced implementation
- Derive 8-bit S-box from small S-boxes using Structure
 - Bitslice implementation of 8-bit S-box can be derived from bitslice implementation of small S-box!
 - Secure cryptographic security by using 3 or more small S-boxes.

- Limitations of Feistel, Lai-Massey, and MISTY Structures
 - 4-bit S-box must use 4 or more nonlinear operations
 - Below 4 nonlinear operations, differential uniformity 4 and non-linearity 4 cannot be satisfied.
 - If three 4-bit S-boxes are used, Criterion 1 of of S_8 is not satisfied
 - In order to satisfy criterion 3 (DC/LC security), criterion 1 (number of nonlinear operations) will


be violated.

- Unbalanced-Bridge structure
 - Using 3-bit, 5-bit S-boxes
 - 3-bit S-box: 3 nonlinear operations
 - 5-bit S-box: 4 nonlinear operations
 - ➤ 3+4+4=11 nonlinear operations
 - Other advantages
 - S_5^2 can be nonbijective S-box
 - The number of bit-XORs used for the structure is 6, which is relatively small

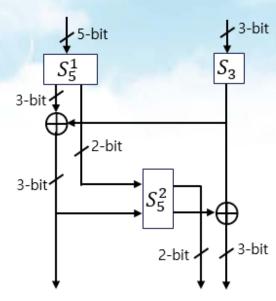

Unbalanced-Bridge structure

Theorem for DBN 3

Theorem 1. The DBN of bijective 8-bit S-boxes constructed using the unbalanced-Bridge is greater than 2 if and only if conditions i), ii), and iii) are all satisfied ($\Delta \alpha$ and $\Delta \beta$ below represent arbitrary differences where $wt(\Delta \alpha) = wt(\Delta \beta) = 1$):

- i) For each $\Delta \alpha, \Delta \beta \in \mathbb{F}_2^3$, at least one of the entry $(\Delta \alpha, \Delta \beta)$ in DDT of S_3 and the entry $(\Delta \beta || 0^{(2)}, \Delta \beta || 0^{(2)})$ in DDT of S_5^2 is 0,
- ii) For each $\Delta \alpha, \Delta \beta \in \mathbb{F}_2^5$, for each $A, B(\neq A) \in \mathbb{F}_2^2$, at least one of $\mathfrak{F}_A^1(X) \oplus \mathfrak{F}_B^1(X) = \Delta \alpha$ and $\mathfrak{F}_A^2(X) \oplus \mathfrak{F}_B^2(X) = \Delta \beta$ has no solution X, where $X \in \mathbb{F}_2^3$,
- iii) For each $\Delta \alpha \in \mathbb{F}_2^3$ and $\Delta \beta \in \mathbb{F}_2^5$, for each $A, B \in \mathbb{F}_2^2$, at least one of $\mathfrak{F}_A^1(X) \oplus \mathfrak{F}_B^1(X \oplus \Delta \alpha) = \Delta \beta$ and $\mathfrak{F}_A^2(X) \oplus \mathfrak{F}_B^2(X \oplus \Delta \alpha) = \Delta 0$ has no solution X, where $X \in \mathbb{F}_2^3$.

Unbalanced-Bridge structure


$$\mathfrak{F}_{A}^{1}: \mathbb{F}_{2}^{3} \to \mathbb{F}_{2}^{5}, \ \mathfrak{F}_{A}^{1}(X) = (S_{5}^{1})^{-1}(X||A) \text{ for } A \in \mathbb{F}_{2}^{2},$$

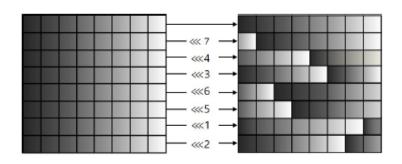
 $\mathfrak{F}_{A}^{2}: \mathbb{F}_{2}^{3} \to \mathbb{F}_{2}^{5}, \ \mathfrak{F}_{A}^{2}(X) = S_{5}^{2}(X||A) \text{ for } A \in \mathbb{F}_{2}^{2}.$

Theorem for LBN 3

Theorem 2. The LBN of bijective 8-bit S-boxes constructed using the unbalanced-Bridge is greater than 2 if and only if conditions i), ii), and iii) are all satisfied (λ_{α} and λ_{β} below represent arbitrary masks where $wt(\lambda_{\alpha}) = wt(\lambda_{\beta}) = 1$):

- i) For each $\lambda_{\alpha}, \lambda_{\beta} \in \mathbb{F}_2^3$, at least one of the entry $(\lambda_{\alpha}, \lambda_{\beta})$ in LAT of S_3 and the entry $(0, \lambda_{\beta} || 0^{(2)})$ in LAT of S_5^2 is 0,
- ii) For each $\lambda_{\alpha} \in \mathbb{F}_2^5$ and $\lambda_{\beta} \in \mathbb{F}_2^3$, $\sum_{A \in \mathbb{F}_2^2} X \cdot Y = 0$ where X is the entry $(\lambda_{\beta}, \lambda_{\alpha})$ in LAT of \mathfrak{F}_A^1 and Y is the entry $(\lambda_{\beta}, \lambda_{\beta} || 0^{(2)})$ in LAT of \mathfrak{F}_A^2 ,
- iii) For each $\lambda_{\alpha}, \lambda_{\beta} \in \mathbb{F}_{2}^{5}$ satisfying $\tau_{3}(\lambda_{\beta}) = 0$, $\sum_{A \in \mathbb{F}_{2}^{2}} X \cdot Y = 0$ where X is the entry $(0, \lambda_{\alpha})$ in LAT of \mathfrak{F}_{A}^{1} and Y is the entry $(0, \lambda_{\beta})$ in LAT of \mathfrak{F}_{A}^{2} .

Unbalanced-Bridge structure

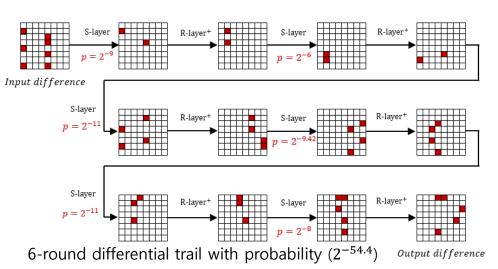

$$\begin{split} &\tau_n: \mathbb{F}_2^5 \to \mathbb{F}_2^n, \ \tau_n(x||y) = x, \ \text{for} \ x \in \mathbb{F}_2^n, \ y \in \mathbb{F}_2^{5-n}, \ n \in \{1,2,3,4\}, \\ &\mathfrak{F}_A^1: \mathbb{F}_2^3 \to \mathbb{F}_2^5, \ \mathfrak{F}_A^1(X) = (S_5^1)^{-1}(X||A) \ \text{for} \ A \in \mathbb{F}_2^2, \\ &\mathfrak{F}_A^2: \mathbb{F}_2^3 \to \mathbb{F}_2^5, \ \mathfrak{F}_A^2(X) = S_5^2(X||A) \ \text{for} \ A \in \mathbb{F}_2^2. \end{split}$$

Design Rationales of R-Layer

- Satisfying full diffusion in 2 rounds.
- Can be implemented using only 8-bit rotation operations.
- Combining the R-layer with the S-layer should enable the cipher to have the best resistance to DC and LC

```
//Input: (MSB) X[7], X[6], X[5], X[4], X[3], X[2], X[1], X[0] (LSB)
X[1] = ((X[1] << 7)) | ((X[1] >> 1));
X[2] = ((X[2] << 4)) | ((X[2] >> 4));
X[3] = ((X[3] << 3)) | ((X[3] >> 5));
X[4] = ((X[4] << 6)) | ((X[4] >> 2));
X[5] = ((X[5] << 5)) | ((X[5] >> 3));
X[6] = ((X[6] << 1)) | ((X[6] >> 7));
X[7] = ((X[7] << 2)) | ((X[7] >> 6));
//Output: (MSB) X[7], X[6], X[5], X[4], X[3], X[2], X[1], X[0] (LSB)
```


Full diffusion: any input bit can affect the entire output bits

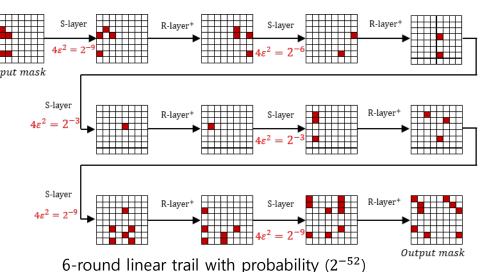


Cryptographic Security (Differential cryptanalsysis)

- The best differential probability for 7-round PIPO is less then 2^{-64} .
 - > Difference characteristic of 7 rounds or more cannot be used for differential attacks.
- The best of differential trails reaches 6 rounds with a probability of $2^{-54.4}$.
 - ➤ Up to 9-round key recovery attacks are possible using 6-round characteristics.

		Rounds						
	1	2	3	4	5	6	7	
#(Active S-box)	1	2	4	6	9	11	13	
Prob. of best trail	2^{-4}	2^{-8}	2^{-16}	$2^{-26.8}$	$2^{-40.4}$	$2^{-54.4}$	2^{-65}	

Minimum numbers of differential active S-boxes and probabilities of best differential trails



Cryptographic Security (Linear cryptanalsysis)

- The best average correlation potentials of 7-round PIPO is less then 2^{-64} .
 - > Linear characteristic of 7 rounds or more cannot be used for linear attacks.
- The best of linear trails reaches 6 rounds with a correlation potential of 2^{-52} .
 - ➤ Up to 9-round key recovery attacks are possible using 6-round Characteristics.

		Rounds					
	1	2	3	4	5	6	7
#(Active S-box)	1	2	4	6	9	11	13
Best correlation potential	2^{-4}	2^{-8}	2^{-16}	2^{-24}	2^{-38}	2^{-52}	2^{-66}

Minimum numbers of linear active S-boxes and correlation potentials of best linear trails

Cryptographic Security (Other cryptanalsysis)

- Boomerang/Rectangle Attack
- Impossible Differential Attack
- Algebraic Attack
- Integral Attack
- Statistical Saturation Attack

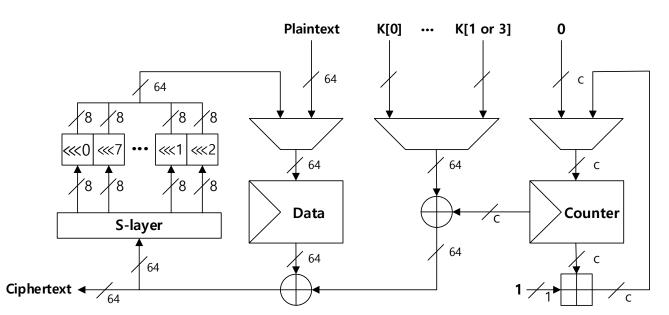
- Meet-In-The-Middle Attack
- Invariant Subspace Attack
- Nonlinear Invariant Attack
- Slide Attack
- Etc..

Table 2. The numbers of rounds of the best characteristics for each cryptanalysis

Key length	Cryptanalysis	${\bf Best\ characteristic}$	Key recovery attack
	Differential	6-round	9-round
	Linear	6-round	9-round
128-bit	Impossible differential	4-round	6-round
	Boomerang/Rectangle	6-round	8-round
	Meet-in-the-Middle	6-round	6-round
	Differential	6-round	11-round
	Linear	6-round	11-round
256-bit	Impossible differential	4-round	8-round
	Boomerang/Rectangle	6-round	10-round
	Meet-in-the-Middle	10-round	10-round

S/W Implementations

- $RANK = (10^6/CPB)/(ROM + 2 \times RAM)$
 - The metric to measure overall performance on low-end devices
 - Implementation environment: 8-bit AVR (ATmega128 running at 8MHz)


Block cipher	Code size	RAM	Execution time	RANK
Block cipiler	(bytes)	(bytes)	(cycles per byte)	ILANK
PIPO-64/128		31	197	13.31
SIMON-64/128	290	24	253	11.69
RoadRunneR-64/128	196	24	477	8.59
RECTANGLE-64/128	466	204	403	2.84
PRIDE-64/128	650	47	969	1.39
SKINNY-64/128	502	187	877	1.30
PRESENT-64/128	660	280	1,349	0.61
CRAFT-64/128	894	243	1,504	0.48
PIPO-64/256	320	47	224	10.77

Comparison of software implementation performances with block ciphers optimized for Bitslice implementation

H/W Implementations

- $FOM = (bits \times 10^9)/(clk + GE^2)$
 - nano bits per clock cycle per GE squared
 - Implementation environment: 130nm ASIC library

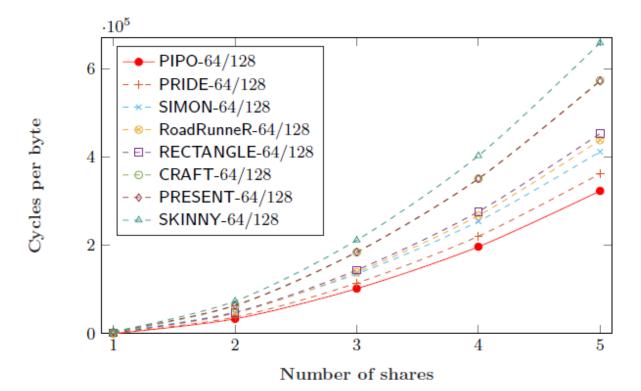
Block cipher	Area		cycles	FOM
Block cipner	[GE]	$({ m Kbps@100KHz})$	/block	$\left[\frac{bits \times 10^9}{clk \times GE^2}\right]$
PIPO-64/128	1,446	492	13	2,355
CRAFT-64/128	949	200	32	2,221
Piccolo-64/128	1,197	194	33	1,354
SIMON-64/128	1,417	133	48	664
RECTANGLE-64/128	2,064	246	26	578
PIPO-64/256	1,583	427	15	1,703

Comparison of hardware implementation performances

Higher-Order Masking Implementations

- PIPO implementation does not require table or constant storage
- PIPO can be implemented with the smallest nonlinear operations among block ciphers that can be implemented in bitslice

	Block cipher	Table size	$\begin{array}{c} \#(\text{nonlinear bitwise} \\ \text{operations}) \end{array}$	Permutation
	PIPO-64/128	0	1,144	7 bit-rotations in bytes
	PRIDE-64/128	80	1,280	MixColumns*
	SIMON-64/128	62	1,408	$3\ \mathrm{bit}\text{-rotations}$ in 32-bit words
Road	dRunneR-64/128	0	1,536	24 bit-rotations in bytes
REC	TANGLE-64/128	25	1,600	3 bit-rotations in 16-bit words
	CRAFT-64/128	64	1,984	${\bf MixColumns*,\ PermuteNibbles}$
P	RESENT-64/128	0	1,984	Bit permutation
	SKINNY-64/128	62	2,304	ShiftRows, MixColumns*


^{*:} multiply with binary matrix

Higher-Order Masking Implementations

 As the number of shares increases, the gap of cycles per bytes according to the number of nonlinear operations becomes prominent.

Conclusion

- New lightweight block cipher PIPO.
- Optimized for 8-bit microcontrollers and hardware implementations.
- Excellent performance in both side-channel protected (Plug-In) and unprotected environments (Plug-Out)

Test vectors, reference codes can be found in github (https://github.com/PIPO-Blockcipher)