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Summary



• One way to construct post-quantum secure ZKP with transparent setup: “CS proofs” paradigm 
based on probabilistically checkable proofs (PCP)+Merkle Treee Commitment (MTC).  

• A PCP scheme allows the prover to efficiently compute a PCP string which encodes the witness of 
the statement to be proven. The verifier can then decide whether the statement is true with 
probability close to 1  by randomly inspecting  entries of the PCP string. q

Motivation: submatrix commitment for post-quantum secure 
zero-knowledge proof scheme with transparent setup



“CS proofs” paradigm

Prover 

PCP: {A,B,C,D} Verifier

Accept if

HABCD = H H HA,HB( ),HCD( )
VerifyPCP

HA HB HC HD

HAB HCD

HABCD

Com(PCP)=HABCD

Show me the second 
character of the PCP string. 

Open:=B 
Proof:={HA, HCD} 



• Problem with Merkle Tree Commitment: can only open one position at a time, and hence the 
space cost incurred due to the Merkle tree commitment is around  bits, where  is the 
size of PCP and  is the security parameter.  

• A submatrix commitment scheme (an improvement of MTC) commits to a message vector and 
opens to multiple entries of the message vector simultaneously.    

• The security of our proposed scheme is reduced to Module-SIS Assumption, which is believed to 
be post-quantum secure. Both the commitment and opening size of our proposed scheme is 
sublinear, i.e., proportional to the square root of the message size. To the best of our knowledge, 
this is the first post-quantum submatrix commitment scheme with sublinear performance. 
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λ
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For , we use  to denote the set . Given a matrix                                         

                                        

that is also denoted as , we define a submatrix 
 as an ordered subset of the entries of the matrix indexed 

by  and .  

a,b∈! a,  b⎡⎣ ⎤⎦ {a,a +1,!,b−1,b}

w =

w0,0 w0,1 ! w0,N−1
w1,0 w1,1 ! w1,N−1
" " # "

wh−1,0 wh−1,1 ! wh−1,N−1

⎛
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⎜
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⎟
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wi,0 ,wi,1,…,wi,N−1 i∈[0,h−1]{ }
wI ,J = wi, j | j ∈J i∈I{ }

I⊆ [0,h−1] J ⊆ [0,N −1]
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Let  be the cyclotomic ring  , where N is a power of 2. Let 
q be a positive integer and define . Here  denotes the 
integers modulo q. For , the norms of f are defined as 

 

In our system, q is a product of two primes  and . For a positive 
integer , we write  to be the set of all elements in with -norm at 
most .  

R R = ! X⎡⎣ ⎤⎦ X N +1

Rq = !q X⎡⎣ ⎤⎦ X N +1 !q
f (X ) = fi

i
∑ X i ∈R

l1 : f 1
= fii∑ , l2 : f
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i
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Sub-linear lattice-based submatrix commitment

• Submatrix commitment syntax: A submatrix commitment scheme consists of five 
algorithms:  

• : Given security parameter , the dimension of a matrix  and , 
outputs the public parameters PP.  

• : Given a matrix w, outputs a commitment C and an auxiliary message aux. 

• : Given two order index sets I, J and the auxiliary message aux, 
outputs an opening  that proves  is the submatrix of the message committed 
under C. 

• : Given inputs commitment C, two order index sets I and J, the 
submatrix of the message  and opening , outputs 1 (accept) or 0 (reject).

Setup(1λ ,h,N ) λ h N

Com w( )
Open I,J,wI,J,aux,C

⎛
⎝

⎞
⎠

ΛI,J wI,J

Verify(C,I,J,wI,J,ΛI,J)
wI,J ΛI,J



Sub-linear lattice-based submatrix commitment



•We exploit a conceptual similarity between Single-Instruction Multiple-Data (SIMD) in homomorphic 
encryption and submatrix commitment, and develops a novel position binding technique based on 
the Chinese Remainder Theorem.  

• In our scheme, the modulus  is a product of two primes  and . The committed message of 

our scheme is an element in , where can be set to 2. The cyclotomic polynomial  is chosen 
to split into linear terms modulo , 

• From the Chinese Remainder Theorem (CRT), one can define an isomorphism: 

q p1 p2

Zp1
p1 φ X( )

q

Our design: primitive idea

!q X⎡⎣ ⎤⎦ Φ X( ) " !q X⎡⎣ ⎤⎦ X −ς0 ,…,!q X⎡⎣ ⎤⎦ X −ς N−1( )

Φ X( ) = X −ς i( )
i=0

N−1

∏⎡
⎣
⎢

⎤

⎦
⎥
p1p2



                     

Similarly, when the message polynomial m(X) is replaced by the commitment C, 
then we have            as a commitment of the respective subvector.                                                                                

m X( )× J X( ) CRT← →⎯⎯ m⊗ J = m0 ∗J0 ,m1 ∗J1,!,mN−1 ∗JN−1
J = 0,1,1,!,0 ⇒m⊗ J = 0,m1,m2 ,!,0

Our design: primitive idea



•The underlying lattice-based commitment scheme: , where  and  

are both matrix of ring elements in  

•  is the message vector, where the  component, i.e., 

 and the  component is set to be 0.  

•The  component of  belongs to , i.e.,  and the  component is set to 
be 0.  

C =
A1
A2

⎛

⎝⎜
⎞

⎠⎟
r X( )+ 0

w(X )
⎛
⎝⎜

⎞
⎠⎟ A1 A2

Rq

w(X )∈ Rq( )ℓ p1
w(X )⎡⎣ ⎤⎦ X−ς j ,p1( ) = H ' w0, j ||w1, j ||! ||wh−1, j( ) p2

p2 r X( ) Sβ r(X )⎡⎣ ⎤⎦ p2
= H ρ( ) p1

Our design: commitment algorithm



•The opening would be the column vector, 
i.e., , which amounts to the 
message column vector with column 
indexes belonging to J and the random 
seed.

Λ I,J = wi, j | i∈[0,h−1], j ∈J ,ρ( )

Our design: opening algorithm



• Since  can be recovered from the above column 
vector and , hence we can recover .  

• Since the seed  is included in the opening,  can be 
recovered. 

•The verification checks whether 

w X( )J X( )⎡⎣ ⎤⎦ p1

w X( )J X( )⎡⎣ ⎤⎦ p2
= 0 w X( )J X( )

ρ r X( )J X( )

J(X )C =
A1
A2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
J(X )r(X )+ 0

w(X )J(X )
⎛

⎝
⎜

⎞

⎠
⎟

Our design: verification algorithm



• Assuming an adversary outputs  
such that  and 

 such that , we can construct an 
algorithm C to solve the  problem over  with 
non-negligible prob. 

C,I,J,wI ,J ,ΛI ,J ,I',J',w'I',J',Λ 'I',J'

Verify(C,I,J,wI ,J ,ΛI ,J ) = Verify(C,I',J',w'I',J',Λ 'I',J') = 1

∃i∈I∩ I'∧ j ∈J∩ J' wi, j ≠ ′wi, j
MSISn,k ,β Rp2

Our design: security proof



 According to the verification equation, we have 

                                         

By multiplying J’(x) with the first equation and J(x) with the second one and minus 
the first with the second, we have 
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J(X )J'(X )(r(X )− r'(X ))

+
!
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J(X )J'(X )(w(X )− w'(X ))
⎛

⎝
⎜

⎞

⎠
⎟ = 0

Our design: security proof



                                        

First we prove that  by contradiction. Since  if 
, we have , but since the 

p1 component of w(x) is the hash of the message column vector, i.e., 

 and we assume  such that 

, therefore unless we have found a collision of the hash function, we 
found a contradiction. 

A1
A2

⎛

⎝
⎜
⎜

⎞

⎠
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J(X )J'(X )(r(X )− r'(X ))

+
!
0

J(X )J'(X )(w(X )− w'(X ))
⎛

⎝
⎜

⎞

⎠
⎟ = 0

J(X )J'(X )(w(X )− w'(X )) ≠ 0modq

J(X )J'(X )w(X ) = J(X )J'(X )w'(X )modq w(ς j )⎡⎣ ⎤⎦ p1
= w'(ς j )⎡⎣ ⎤⎦ p1

,∀j ∈J∩ J'

w(X )⎡⎣ ⎤⎦ X−ς j ,p1( ) = H ' w0, j ||w1, j ||! ||wh−1, j( ) ∃i∈I∩ I'∧ j ∈J∩ J'

wi, j ≠ ′wi, j

Our design: security proof



•

                                                                                                     

The  component of  belongs to , we have found a solution for the 

 problem over  

A1
A2

⎛

⎝
⎜
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⎞

⎠
⎟
⎟
J(X )J'(X )(r(X )− r'(X ))

+
!
0

J(X )J'(X )(w(X )− w'(X ))
⎛

⎝
⎜

⎞

⎠
⎟ = 0∧ J(X )J'(X )(w(X )− w'(X )) ≠ 0modq

⇒ J(X )J'(X )(r(X )− r'(X )) ≠ 0modq( )∧ [r(X )]p1 = [r'(X )]p1 = 0
⇒ J(X )J'(X )(r(X )− r'(X )) ≠ 0mod p2( )∧ [J(X )]p2 = [J'(X )]p2 = 1
⇒ (r(X )− r'(X )) ≠ 0mod p2

p2 r X( ) Sβ

MSISn,k ,β Rp2

Our design: security proof



•                                                                                                                           

When we set h and N to be equal, we have a commitment and opening size 
equal to the square root of the message matrix size, which is sublinear.  

Our design: Performance analysis
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