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Motivation: submatrix commitment for post-quantum secure
zero-knowledge proof scheme with transparent setup

* One way to construct post-quantum secure ZKP with transparent setup: “CS proofs” paradigm
based on probabilistically checkable proofs (PCP)+Merkle Treee Commitment (MTC).

* A PCP scheme allows the prover to efficiently compute a PCP string which encodes the witness of
the statement to be proven. The verifier can then decide whether the statement is true with

probability close to 1 by randomly inspecting 4 entries of the PCP string.



“CS proofs” paradigm
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Motivation: submatrix commitment for post-quantum secure
zero-knowledge proof scheme with transparent setup

e Problem with Merkle Tree Commitment: can only open one position at a time, and hence the

space cost incurred due to the Merkle tree commitment is around q/l log€ bits, where / is the
size of PCP and 4 is the security parameter.

e A submatrix commitment scheme (an improvement of MTC) commits to a message vector and
opens to multiple entries of the message vector simultaneously.

e The security of our proposed scheme is reduced to Module-SIS Assumption, which is believed to
be post-quantum secure. Both the commitment and opening size of our proposed scheme is
sublinear, i.e., proportional to the square root of the message size. To the best of our knowledge,
this is the first post-quantum submatrix commitment scheme with sublinear performance.



Preliminaries

For a,beN, we use [« b] to denote the set {a,a+1,---,b—1,b}. Given a matrix

Woo Wor 7 Wona

Wisio Wien 777 Wioinva

that is also denoted as {<W,0>W s Wy >leo,1 1} we define a submatrix

Wi ={<Wi,,- |j€J>i€I} as an ordered subset of the entries of the matrix indexed



Preliminaries

Let R be the cyclotomic ring R=z[X]/(x"+1) , where N is a power of 2. Let

q be a positive integer and define R,=Z,[X /(X" +1). Here Z, denotes the
integers modulo q. For f(X):foXl €R the norms of fare defined as

A =Sk A =(Z)F) L AIAL = ma 1)

In our system, g is a product of two primes 7, and p,. For a positive

S

iInteger ,3, we write “p to be the set of all elements in szwith ll-norm at

most ,3.



Preliminaries

Definition 1 (MSIS,k 3). Given A <+ RI“" ™™ find a short vector r € RF
such that (In,A) -r =0 and 0 < ||r||y < 8. For an algorithm A, we define
Adv ' 5(A) as

A « R,

r < A(A):

b:=(r e RF) A ((I,,A) -7 =0)A
(0 < |lrlls < 5)

Pr|b=1

where A indicates the conjunctive operation. We say an algorithm A has at least
an advantage € in solving the Module-SIS,, . g problem if Adv;' ;"5 (A) > e.



Sub-linear lattice-based submatrix commitment

e Submatrix commitment syntax: A submatrix commitment scheme consists of five
algorithms:

. Setup(1*,4,N): Given security parameter 1, the dimension of a matrix # and N,
outputs the public parameters PP.

. Com(w); Given a matrix w, outputs a commitment C and an auxiliary message aux.

. OPGH(I,J,WLJ,WX,C): Given two order index sets |, J and the auxiliary message aux,

outputs an opening ALJ that proves Wu is the submatrix of the message committed
under C.

. Verify(C,LLJ,w,,A,,): Given inputs commitment C, two order index sets | and J, the
submatrix of the message W|; and opening AI,J, outputs 1 (accept) or O (reject).



Sub-linear lattice-based submatrix commitment

Definition 4 (Position Binding). A submatriz commitment scheme is posi-

tion binding if for any adversary A, there exists a negligible function negl(\)
such that:

PP « Setup(1*,h,N)

C,aux < Com (w)

Ary < Open(1,J,wy 3, auz, C)

Pr|b=1|b:=(Veriyfy(C,1,J, A1 3)) A

(Verify(C,I',J', Ay 3/)) A
JieIn'Ajedn

(s.t.wi,j # W, )

is smaller than or equal to negl(\).



Our design: primitive idea

«We exploit a conceptual similarity between Single-Instruction Multiple-Data (SIMD) in homomorphic
encryption and submatrix commitment, and develops a novel position binding technique based on
the Chinese Remainder Theorem.

«In our scheme, the modulus ¢ is a product of two primes P, and P,. The committed message of

our scheme is an element in £, , where P can be set to 2. The cyclotomic polynomial ¢(X) is chosen

o(0)=|lx-5)|

to split into linear terms modulo ¢,
i=0

* From the Chinese Remainder Theorem (CRT), one can define an isomorphism:

z,[X]/(@(x) > (2, [x]/(x =)z, [X]/{x =)



Our design: primitive idea

m(X)xJ( X)L om®T =(m *J,m *J - ,m, *J, )
J=(0,1,1--,0) > m®J =(0,m,,m,,-,0)

Similarly, when the message polynomial m(X) is replaced by the commitment C,
then we have J(X)C as a commitment of the respective subvector.



Our design: commitment algorithm

A 0
. I he underlying lattice-based commitment scheme: A, w(X) ), where &, and A,
are both matrix of ring elements in Rq
¢
JW(X)e (Rq)

is the message vector, where the P, component, i.e.,

[W(X)](X_gj,pl) =~ H'(Wo,j (AUFI B Wh—l,j) and the P, component is set to be O.

«The P, component of I‘(X) belongs to S5, i.e., [r(X)]p2 =H(P) and the P, component is set to
be O.



Our design: opening algorithm

[ he opening would be the column vector,
l.e., A, =((w,lic0n-1.5¢3).0) . which amounts to the
message column vector with column
Indexes belonging to J and the random
seed.



Our design: verification algorithm

e Since [v(¥)1(x)] can be recovered from the above column
vector and [v(x)i(x)] =0, hence we can recover w(X)J(X).

e Since the seed P is included in the opening, r(X)J(X) can be
recovered.

. . A 0
. I he verification checks whether J<X)C=[ A JJ(X”‘(X)*[ W(NI(X) ]

2



Our design: security proof

e Assuming an adversary outputs CLIw, A LIJW, LAY,
such that Verify(C.LI,w, A )= Verify(C,I' I w', ,.,A", V=1 and
JieInI'AjednI' such that v, #%,, we can construct an
algorithm C to solve the MSIS,,; problem over %, with
non-negligible prob.



Our design: security proof

According to the verification equation, we have

. A, 0
J(X)C= [ N ]J(X)r(X) +[ wCOI(X) ]

' _ Al ' ' 0
J (X)C—[ A ]J (X)r (X)+[ WOI(X) ]

2

By multiplying J’(x) with the first equation and J(x) with the second one and minus
the first with the second, we have

A
{ Al ]J(X)J'(X)(r(X)—r'(X))

2

+ 0 =0
[ JCOPXOWX) = W(X)) ]



Our design: security proof

[ :: JJ(X)J'(X)(r(X)—r'(X))
+( 0 }zo
JCOT(X)W(X) = W(X)
First we prove that J(X)J'(X)(w(X)-w'(X))#0modqg by contradiction. Since if

JCOI(X)W(X) = J(X)I(X)W(X)modg , we have | W) :[W'(QJ)L;VJ'EJHJ', but since the

P

p1 component of w(x) is the hash of the message column vector, i.e.,
[W(X)](X_gj,pl) =H'(w,, 1%, 1 1%,.,) and we assume 3i€INI'A jeJNT' such that
W, # Wi,,j, therefore unless we have found a collision of the hash function, we
found a contradiction.



Our design: security proof

A
[ Al ]J(X)J'(X)(r(X)—r'(X))

2

0 _ \ o
+[ OO — W) ] =0 AJ(X)T'(X)(W(X)— W'(X)) %= 0mod g

(= IOIX)(X(X) - (X)) = 0modg) Alr(X)], =[r'(X)], =0

(:> J(X)I'(X)(r(X)—r'(X))# 0mod p, ) A [J(X)]p2 = [J'(X)]p2 =1
= (r(X)-r'(X))#0mod p,

The P, component of r(X) belongs to S;, we have found a solution for the

MSIS, , ; problem over R,



Our design: Performance analysis

Scheme |Merkle Tree 2] This work
\pp| 1 AM A
C| A A2 AVM
A| AU log M A2 AUVM
Com AM MM AW
Open AMlog M |A2(M —¢*)[A\2 (W +1)
Verify AU log M AU AW
Assumption| CRH Root MSIS
PQ) secure? YES NO YES

Table 1. Comparison of setup-free subvector commitment schemes.

When we set h and N to be equal, we have a commitment and opening size
equal to the square root of the message matrix size, which is sublinear.
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