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Post-Quantum Cryptography & AKE
• Current cryptosystems (Diffie-Hellman, RSA, etc.) will be 

broken by Shor’s algorithm [Sho97] with quantum computers.
• CSIDH [CLM+18]

• Post-Quantum Key Exchange
• Similar structure to DH

• DH and CSIDH are vulnerable to the man-in-the-middle attack.
• We need Authenticated Key Exchange (AKE).

[CLM+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An Effic
-ient Post-Quantum Commutative Group Action. In ASIACRYPT 2018

[Sho97] P.W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5)



Tightness
• Π: Protocol, 𝑃𝑃: hard problem
• In the security proof, we have AdvΠ𝒜𝒜 𝜆𝜆 ≤ 𝐿𝐿 𝜆𝜆 ⋅ Adv𝑃𝑃ℬ 𝜆𝜆 .

• 𝐿𝐿 𝜆𝜆 is called security loss.
• If security loss is large, larger parameters are used, thus inefficient.

• Many post-quantum AKEs have been proposed, but security 
losses are large.

Can we construct a post-quantum AKE
with small security loss?



Contribution
1. We prove that the computational problem of CSIDH and the 

gap problem of CSIDH are random self-reducible.
• Random self-reducibility of a hard problem is useful to achieve 

tightness of protocols
• Gap problem is a computational problem given access to the 

corresponding decision oracle.
• Gap problem is very useful for AKE’s security proof.



Contribution
2. As an application, we propose CSIDH-based (post-quantum) 

AKE with optimal tightness, following the construction of 
Cohn-Gordon et al. [CCG+18]
• Cohn-Gordon et al.’s AKE is based on DH, thus not quantum-resistant.
• It is the fastest CSIDH-based AKE when we aim at 110-bits

security level.

[CCG+18]
K. Cohn-Gordon, C. Cremers, K. Gjøsteen, H. Jacobsen, and T. Jager. 
Highly Efficient Key Exchange Protocols with Optimal Tightness. 
In CRYPTO 2019



Random Self-Reducibility (RSR)
• Let 𝑃𝑃 be a problem to evaluate 𝑓𝑓 𝑥𝑥

given uniformly chosen 𝑥𝑥. 
• 𝑃𝑃 is random self-reducible when we can 

generate multiple instances 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 s.t.
• If any one of 𝑓𝑓 𝑥𝑥𝑖𝑖 is given, we can 

compute 𝑓𝑓 𝑥𝑥 efficiently, and
• 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are independent and uniform.

• RSR is useful to achieve tightness
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AKE’s security model

Alice

BobCharlie

Dave
Adversary

Real?
Random?

𝑘𝑘

Test-query

• We assume multiple users
• Adversary chooses users to get real-or-random keys (RoR)

• To decide real-or-random is hard ⇒ AKE is secure



RSR and tight AKE
• Embedding the instance to multiple 

users lowers the security loss, but 
• we should compute 𝑓𝑓 𝑥𝑥 when any 

embedded user is tested, and
• public keys of the embedded users 

must be independent.
• These two requirements are similar to 

the definition of RSR
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Hard Problems for Diffie-Hellman
• Let 𝔾𝔾 = 𝑔𝑔 be a cyclic group of prime order 𝑝𝑝.

• Computational Diffie-Hellman Problem (CDH problem)
• Given 𝑋𝑋 = 𝑔𝑔𝑥𝑥,𝑌𝑌 = 𝑔𝑔𝑦𝑦, compute 𝑍𝑍 = 𝑔𝑔𝑥𝑥𝑥𝑥.

• Decisional Diffie-Hellman Problem (DDH problem)
• Given 𝑋𝑋 = 𝑔𝑔𝑥𝑥,𝑌𝑌 = 𝑔𝑔𝑦𝑦 ,𝑍𝑍 ∈ 𝔾𝔾, decide 𝑍𝑍 = 𝑔𝑔𝑥𝑥𝑥𝑥 or not.

• DDH and CDH are RSR.



RSR of CDH

• Given CDH-instance 𝑋𝑋 = 𝑔𝑔𝑥𝑥 ,𝑌𝑌 = 𝑔𝑔𝑦𝑦, rerandomize as 

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑎𝑎𝑖𝑖 ,𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑏𝑏𝑖𝑖 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ← ℤ𝑝𝑝

• If 𝑖𝑖-th answer 𝑍𝑍𝑖𝑖 = 𝑔𝑔𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖𝑥𝑥𝑥𝑥 is given, we can recover 𝑔𝑔𝑥𝑥𝑥𝑥 by 

computing 𝑍𝑍𝑖𝑖
𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 −1.

• Independency follows from that of 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖.



RSR of DDH (1/2)

• DDH instance: 𝑋𝑋,𝑌𝑌,𝑍𝑍 = 𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑧𝑧

• 1st idea: 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑎𝑎𝑖𝑖 ,𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑏𝑏𝑖𝑖

• 𝑍𝑍 = 𝑔𝑔𝑥𝑥𝑥𝑥 ⇒ 𝑍𝑍𝑖𝑖 = 𝑔𝑔𝑎𝑎𝑖𝑖𝑥𝑥𝑏𝑏𝑖𝑖𝑦𝑦 = 𝑍𝑍𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖, so 𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖?

• When 𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥𝑥𝑥, 𝑍𝑍𝑖𝑖 must be independent to 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖, but 𝑍𝑍𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 is not 

independent of 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖 for fixed 𝑋𝑋,𝑌𝑌, and 𝑍𝑍.

• This idea does not to work.



RSR of DDH (2/2)
• DDH instance: 𝑋𝑋,𝑌𝑌,𝑍𝑍 = 𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑧𝑧

• 2nd idea: 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑎𝑎𝑖𝑖 ⋅ 𝑔𝑔𝑐𝑐𝑖𝑖 = 𝑔𝑔𝑎𝑎𝑖𝑖𝑥𝑥+𝑐𝑐𝑖𝑖 ,𝑌𝑌𝑖𝑖 = 𝑌𝑌 ⋅ 𝑔𝑔𝑏𝑏𝑖𝑖
• 𝑍𝑍 = 𝑔𝑔𝑥𝑥𝑥𝑥 ⇒ 𝑍𝑍𝑖𝑖 = 𝑔𝑔 𝑎𝑎𝑖𝑖𝑥𝑥+𝑐𝑐𝑖𝑖 𝑦𝑦+𝑏𝑏𝑖𝑖 = 𝑍𝑍𝑎𝑎𝑖𝑖 ⋅ 𝑋𝑋𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 ⋅ 𝑌𝑌𝑐𝑐𝑖𝑖 ⋅ 𝑔𝑔𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖, so 
𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑎𝑎𝑖𝑖 ⋅ 𝑋𝑋𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 ⋅ 𝑌𝑌𝑐𝑐𝑖𝑖 ⋅ 𝑔𝑔𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖?

• In this case, when 𝑍𝑍 ≠ 𝑔𝑔𝑥𝑥𝑥𝑥, 𝑍𝑍𝑖𝑖 is independent of 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖.
• Two operations (exponentiation & multiplication) are used 

in DDH-case
• In CDH-case, we use only exponentiation.
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Hard Homogeneous Spaces [Cou06]
• 𝔾𝔾 : abelian group, 𝐻𝐻: finite set
• A group action ⋆: 𝑔𝑔 ∈ 𝔾𝔾, ℎ ∈ 𝐻𝐻 ↦ 𝑔𝑔 ⋆ ℎ ∈ 𝐻𝐻 is a map such that

• ∀𝑔𝑔1,𝑔𝑔2 ∈ 𝔾𝔾,𝑔𝑔1 ⋆ 𝑔𝑔2 ⋆ ℎ = 𝑔𝑔1𝑔𝑔2 ⋆ ℎ, and
• For the unit element 𝑒𝑒 ∈ 𝔾𝔾, ∀ℎ ∈ 𝐻𝐻, 𝑒𝑒 ⋆ ℎ = ℎ.

• ⋆ is simply transitive if a map 𝑔𝑔 ↦ 𝑔𝑔 ⋆ ℎ is bijective for all ℎ ∈ 𝐻𝐻.
• If there is an action which is simply transitive and hard to invert,
𝔾𝔾,𝐻𝐻 is called Hard Homogeneous Space (HHS). 

[Cou06] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptolo
gy ePrint Archive, Report 2006/291, 2006



HHS-based Key Exchange
• We can construct a DH-like key exchange with HHS.

Alice

𝑎𝑎 ← 𝔾𝔾,
𝐴𝐴 = 𝑎𝑎 ⋆ 𝑥𝑥0

𝐾𝐾𝐴𝐴 = 𝑎𝑎 ⋆ 𝐵𝐵

Bob

𝑏𝑏 ← 𝔾𝔾,
𝐵𝐵 = 𝑏𝑏 ⋆ 𝑥𝑥0

𝐾𝐾𝐵𝐵 = 𝑏𝑏 ⋆ 𝐴𝐴

𝐴𝐴 𝐵𝐵

Public parameter: 
𝑥𝑥0 ∈ 𝐻𝐻

• We can realize HHS with elliptic curves and isogenies, 
and CSIDH is a key exchange protocol of this type.



Hard Problems for CSIDH (HHS)
• CSI-CDH problem

• Given 𝑎𝑎 ⋆ 𝑥𝑥0,𝑏𝑏 ⋆ 𝑥𝑥0, compute 𝑎𝑎𝑎𝑎 ⋆ 𝑥𝑥0.
• CSI-DDH problem

• Given 𝑎𝑎 ⋆ 𝑥𝑥0,𝑏𝑏 ⋆ 𝑥𝑥0 and 𝐶𝐶 ∈ 𝐻𝐻, decide whether 𝐶𝐶 = 𝑎𝑎𝑎𝑎 ⋆ 𝑥𝑥0 or not.
• These problems are considered to be hard even for quantum 

computers, so CSIDH is regarded to be post-quantum key 
exchange.



Contribution: RSR of CSI-CDH Problem
• We can prove that CSI-CDH problem is RSR.
• Given 𝐴𝐴 = 𝑎𝑎 ⋆ 𝑥𝑥0,𝐵𝐵 = 𝑏𝑏 ⋆ 𝑥𝑥0, we rerandomize as 

𝐴𝐴𝑖𝑖 = 𝜌𝜌𝑖𝑖 ⋆ 𝐴𝐴,𝐵𝐵𝑖𝑖 = 𝜂𝜂𝑖𝑖 ⋆ 𝐵𝐵.
• 𝑖𝑖-th answer is 𝐶𝐶𝑖𝑖 = 𝜌𝜌𝑖𝑖𝜂𝜂𝑖𝑖𝑎𝑎𝑎𝑎 ⋆ 𝑥𝑥0, so 𝜌𝜌𝑖𝑖𝜂𝜂𝑖𝑖 −1 ⋆ 𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑎𝑎 ⋆ 𝑥𝑥0.
• Since the map 𝑔𝑔 ↦ 𝑔𝑔 ⋆ 𝐴𝐴 is bijective, 𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 are independent and 

uniform.
• In computational case, CDH-technique can be used.



CSI-DDH seems not to be RSR
• In DDH-case, we rerandomized like 𝑋𝑋𝑎𝑎𝑖𝑖 ⋅ 𝑔𝑔𝑐𝑐𝑖𝑖 for independency.

• In CSIDH-case, 𝑋𝑋𝑎𝑎𝑖𝑖 and 𝑔𝑔𝑐𝑐𝑖𝑖 are elements in 𝐻𝐻, finite set, so we have no 
operation between them.

• In CSIDH, we cannot use the same technique as in DDH-case.
• This “lack of operation” is inevitable for quantum-resistance.

• If we can use the  same technique in HHS, then we can invert the 
action with Shor’s algorithm.

We achieve quantum-resistance
at the expense of utility.
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Comparison for 110-bit security level
Protocol Security loss Underlying 

Problems
Parameters [CLM+18]

CSIDH UM [FTY19] 𝜇𝜇2𝑙𝑙2 2DDH CSIDH-1024

CSIDH Biclique 
[FTY19]

max 𝜇𝜇, 𝑙𝑙 2 2GDH CSIDH-512

Proposed protocol 𝜇𝜇 CSI-stDH CSIDH-512

[FTY19] Atsushi Fujioka, Katsuyuki Takashima, and Kazuki Yoneyama. One-Round Auth
enticated Group Key Exchange from Isogenies. In ProvSec 2019

[CLM+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An Effic
-ient Post-Quantum Commutative Group Action. In ASIACRYPT 2018

• 𝜇𝜇 = 216 users and at most 𝑙𝑙 = 216 sessions per user.
• We assume that the best way to solve these problems is 

to invert the group action



Comparison for 110-bit security level
Protocol Parameters # of actions Expected clock time 

[BDLS20]

CSIDH UM [FTY19] CSIDH-1024 3 719M × 3 = 2,157M

CSIDH Biclique 
[FTY19]

CSIDH-512 5 120M × 5 = 600M

Proposed protocol CSIDH-512 4 120M × 4 = 480M

[FTY19] Atsushi Fujioka, Katsuyuki Takashima, and Kazuki Yoneyama. One-Round Auth
enticated Group Key Exchange from Isogenies. In ProvSec 2019

[BDLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith, Faster computation 
of isogenies of large prime degree. Cryptology ePr-int Archive, Report 2020/341

• We take 𝜇𝜇 = 216, 𝑙𝑙 = 216 here.
• Our protocol is the fastest CSIDH-based AKEs.
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Conclusion & Future works
Conclusion:
• We showed that the computational problem and the gap 

problem of CSIDH are RSR.
• As an application, we proposed an optimally-tight post-quantum 

AKE.
Future works:
• To prove RSR of CSI-DDH problem in another way
• To propose an optimally-tight post-quantum AKE

in stronger models.



Thank you for listening!
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