Secret Sharing with Statistical Privacy and Computational Non-Malleability

<u>Tasuku Narita</u>* Fuyuki Kitagawa † Yusuke Yoshida * Keisuke Tanaka *

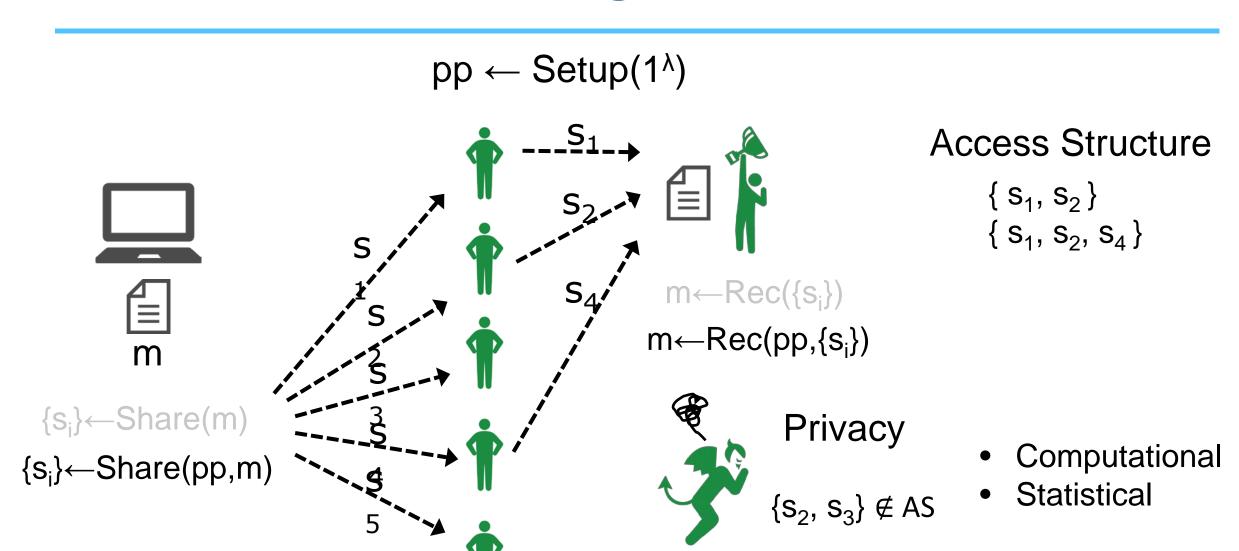
* Tokyo Institute of Technology † NTT Secure Platform Laboratories

Our Result

 Define the relaxed notion of computational non-malleability for secret sharing

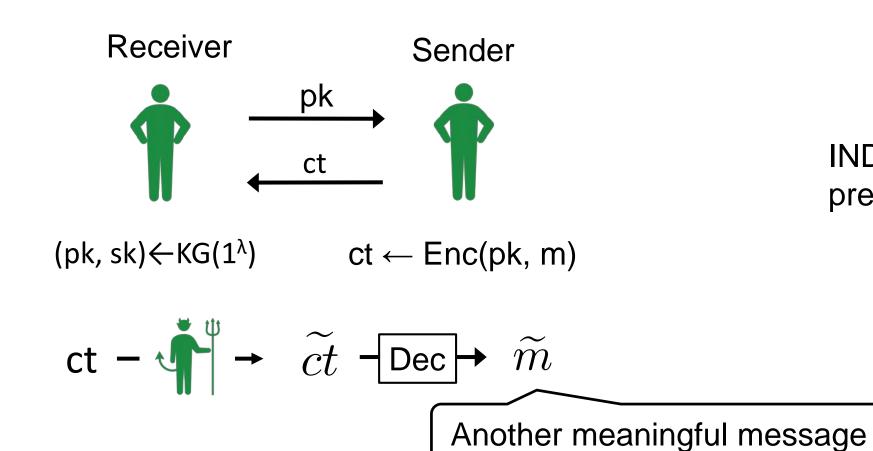
Construct non-malleable secret sharing in public parameter model

Secret Sharing [Bla79, Sha79]



Tampering in the Case of PKE

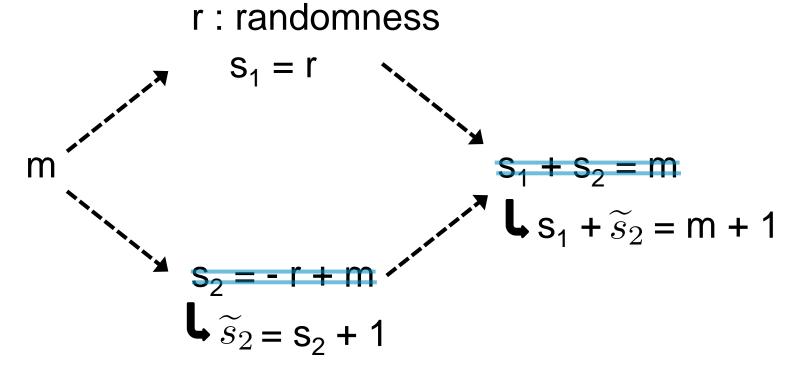
Privacy does not imply non-malleability



IND-CCA security can prevent tampering.

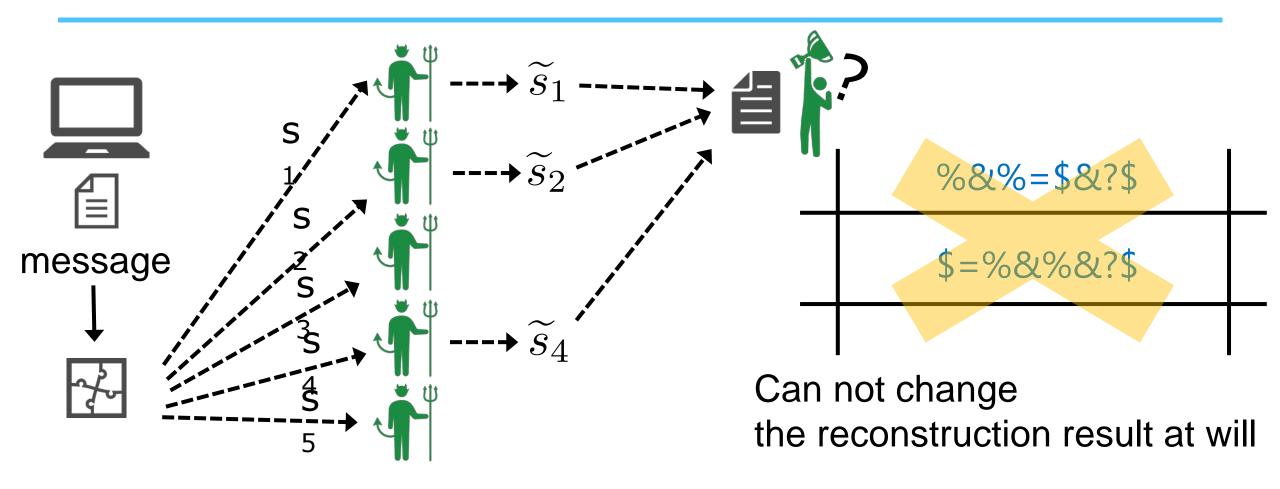
Tampering in the Case of Secret Sharing

2-out-of-2 secret sharing



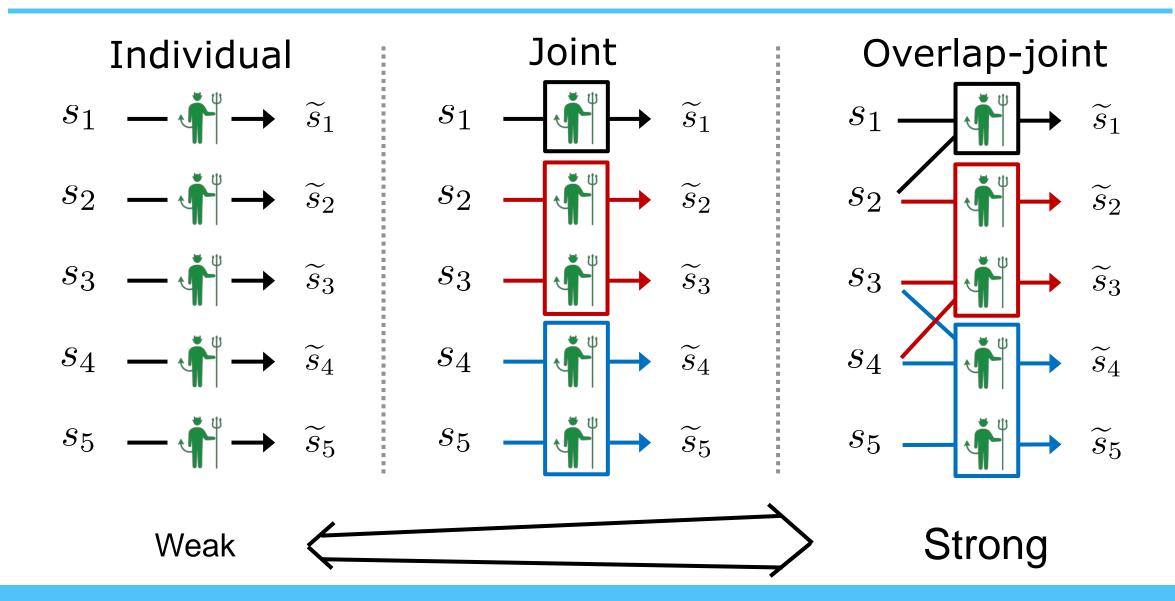
Tampering attack is easy

Non-Malleability for Secret Sharing



There are computational / statistical non-malleability

Tampering Model [GK18a, GK18b]



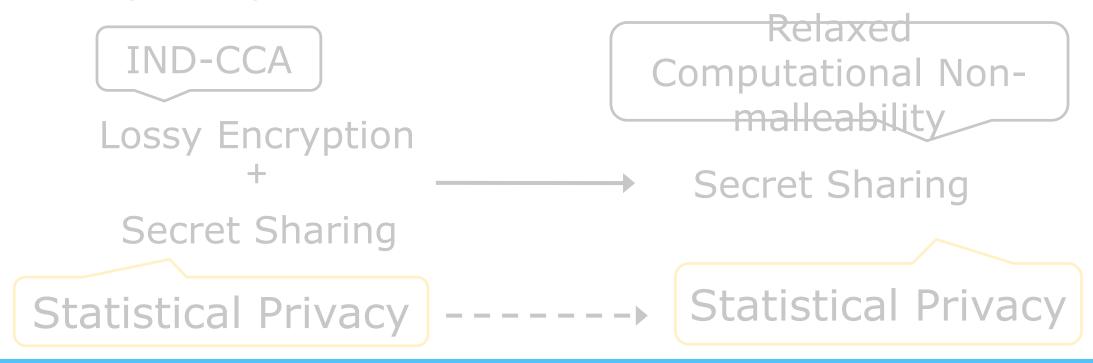
Previous Works

These are the result which has non-malleability against (over-lap) joint tampering

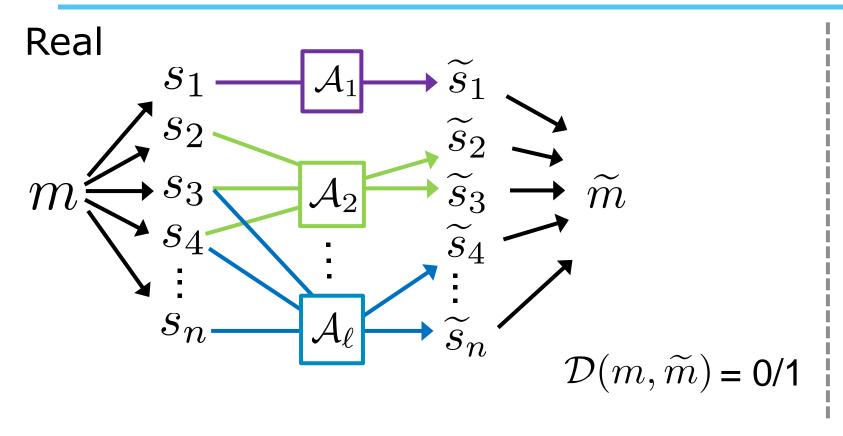
	Access Structure	Tampering Model	Non- Malleability	Privacy
GK18a	Thredhold	Joint	Statistical	Statistical
GK18b	n-out-of-n	Overlap-Joint	Statistical	Statistical

Our Result

- Define the notion of relaxed computational non-malleability
- Construct non-malleable secret sharing in the public parameter model



(Not Relaxed) Computational Non-Malleability



Ideal

$$1^{\lambda}$$
 Sim $\rightarrow \widetilde{m}$

$$\mathcal{D}(m,\widetilde{m})$$
 = 0/1

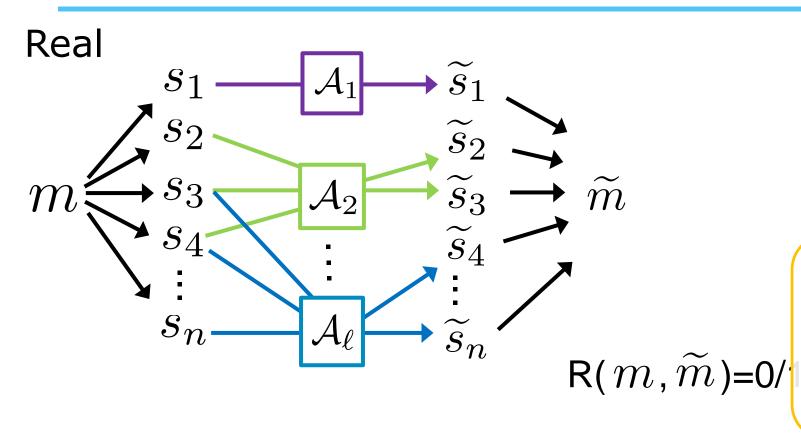
For any adversary, exist a simulator s.t. for any distinguisher ${\mathcal D}$

$$| Pr[Real = 1] - Pr[Ideal = 1] | = negl(\lambda)$$

→ Satisfy the comp. non-malleability

Require strict simulation

Relaxed Computational Non-Malleability



Ideal

$$1^{\lambda}$$
 Sim $\rightarrow \widetilde{m}$

Restriction:

$$\mathsf{R}(\ m\,,m\,) = \mathsf{R}(\ m\,,\,\perp\,) = \mathsf{0}$$

Some information is lost

For any adversary, exist a simulator s.t. for any relation R

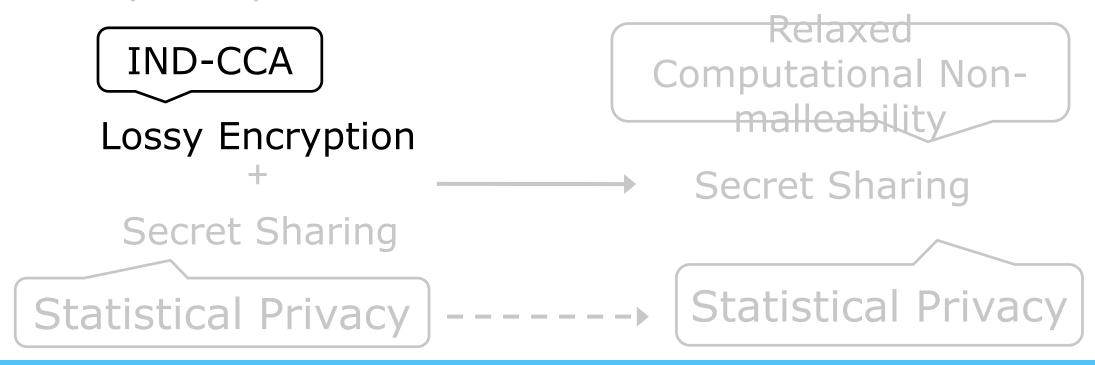
$$Pr[Real = 1] - Pr[Ideal = 1] \le negl(\lambda)$$

→ Satisfy the relaxed comp. non-malleability

Refer to non-malleability for commitment by Crescenzo et al.

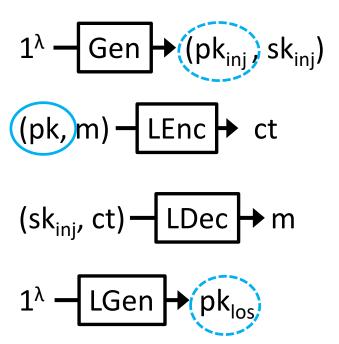
Our Result (Repost)

- Define the notion of relaxed computational non-malleability
- Construct non-malleable secret sharing in the public parameter model



Lossy Encryption

Lossy Encryption Scheme: $\Lambda = (Gen, LGen, LEnc, LDec)$



Injective Mode (When using pkini)

INDCCA PKE

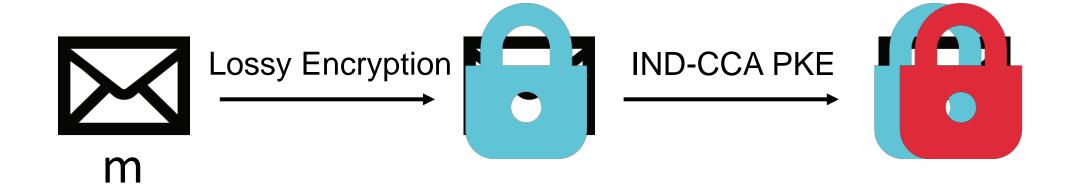
Lossy Mode (When using pk_{los})

Information of m disappears

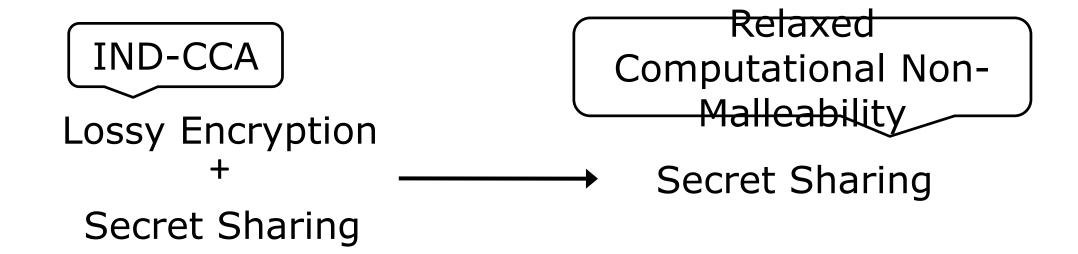
- Key Indistinguishability
- Statistical Privacy in the Lossy Mode LEnc(pk_{los}, m_0) \approx_s LEnc(pk_{los}, m_1)

 $\mathsf{pk}_{\mathsf{inj}} \approx_c \mathsf{pk}_{\mathsf{los}}$

Lossy Encryption in the Injective Mode



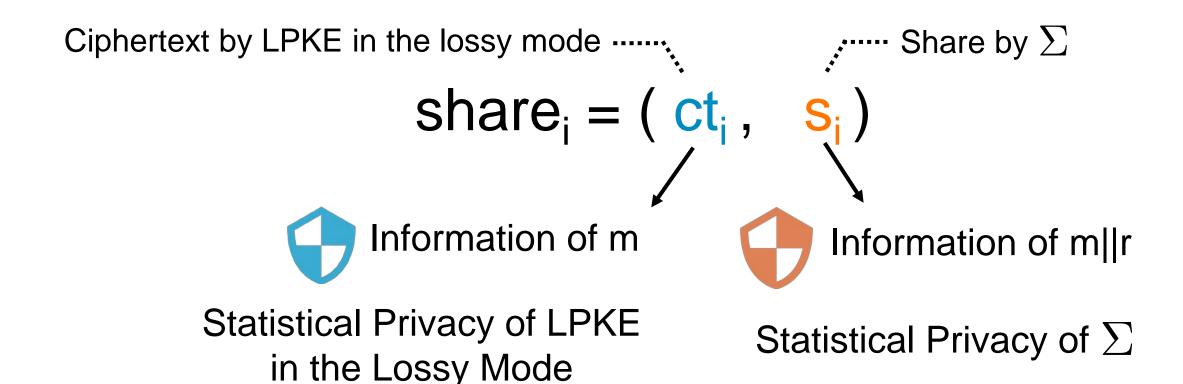
Construction(Repost)



Non-Malleable Secret Sharing

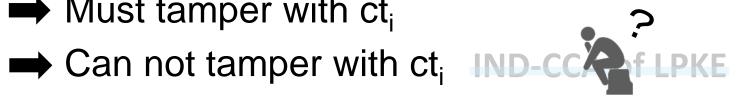
```
IND-CCA Lossy Encryption Scheme
                                                               Secret Sharing Scheme
  LPKE = (Gen, LGen, LEnc, LDec)
                                                         \Sigma_{\text{NM}} = (NMSetup, NMShare, NMRec)
       Secret Sharing Scheme
       \Sigma = (Setup, Share, Rec)
NMSetup(1^{\lambda}):
                                                             NMRec(pp<sub>nm</sub>, \{share_i\}_{i \in T}):
 Run Setup and LGen
                                                                  share_i = (ct_i, s_i)
 Output pp_{nm} := (pk_{los}, pp)
                                                                  (pp, \{s_i\}) \rightarrow Rec \rightarrow m'||r'
NMShare(pp_{nm}, m):
                             lossy mode
   pp_{nm} = (pk_{los}, pp)
                                                                           For all ct<sub>i</sub>,
                                                                  LEnc(pk_{los}, m'; r') = ct_i?
    (pk_{los}, m) - LEnc \rightarrow ct
concatenate
                                                                      Yes→ m'
     (pp, m||r) - Share \rightarrow \{s_i\} share := (ct, s_i)
```

Intuition of Statistical Privacy



Intuition of Computational Non-Malleability

- Output of NMRec is not $\perp \rightarrow$ "contents" of ct_i
 - → Must tamper with ct_i



```
NMRec(pp<sub>nm</sub>, \{share_i\}_{i \in T}):
    Compute m'||r' from {s<sub>i</sub>}
```

```
For all ct<sub>i</sub>,
LEnc(pk_{los}, m'; r') = ct_i?
```

- □ IND-CCA security can not apply in the lossy mode
- → Switch to the injective mode from lossy mode Key Indistinguishability
- ⊜Information of m and r is not leaked from s_i?
- Information on m and r is not leaked Privacy of \sum
- Can apply IND-CCA security

Can not tamper with shares

Summary

We can give relaxed computational non-malleability for over-lap joint tampering to any secret sharing.

public parameter model

IND-CCA
Lossy Encryption
+
Secret Sharing with Relaxed
Computational Non-Malleability

Conversion while preserving statistical privacy