Security Definitions on Time-Lock Puzzles

Daiki Hiraga*1 Keisuke Hara*1*2 Masayuki Tezuka*1 Yusuke Yoshida*1 Keisuke Tanaka*1

*1:Tokyo Institute of Technology
*2:AIST

Time Lock

Time Lock

The key does not exist and no one can open it for a certain period of time

Receiver

 Puzzle generation takes much shorter than T.

- Puzzle generation takes much shorter than T.
- Receiver cannot get information about the message in less than time T.

- Puzzle generation takes much shorter than T.
- Receiver cannot get information about the message in less than time T.

Parallel computing cannot speed up the time to solve puzzles.

E-voting(trusted third party)

E-voting(trusted third party)

E-voting(commitment)

Voting phase

bulletin board

E-voting(commitment)

Counting phase

bulletin board

E-voting (commitment)

E-voting(commitment)

No one can know the result.

Counting phase

bulletin board

E-voting(Time-Lock Puzzle)

Voting phase

bulletin board

E-voting(Time-Lock Puzzle)

We can know the result by solving the puzzle

Counting phase

bulletin board

Construction

• A time-lock puzzle from the inherent sequentiality of repeated squaring in the RSA group[RSW96]

Construction

- A time-lock puzzle from the inherent sequentiality of repeated squaring in the RSA group[RSW96]
- Time-lock puzzles from non-parallelizable languages and randomized encodings [BGJ+16]

Construction

- A time-lock puzzle from the inherent sequentiality of repeated squaring in the RSA group[RSW96]
- Time-lock puzzles from non-parallelizable languages and randomized encodings [BGJ+16]

Advanced functionality

A fully homomorphic time-lock puzzle[MT19],[BDG+19]

Construction

- A time-lock puzzle from the inherent sequentiality of repeated squaring in the RSA group[RSW96]
- Time-lock puzzles from non-parallelizable languages and randomized encodings [BGJ+16]

Advanced functionality

A fully homomorphic time-lock puzzle[MT19],[BDG+19]

Application

A non-malleable commitment from a time-lock puzzle[LPS17]

Construction

- A time-lock puzzle from the inherent sequentiality of repeated squaring in the RSA group[RSW96]
- Time-lock puzzles from non-parallelizable languages and randomized encodings [BGJ+16]

Advanced functionality

A fully homomorphic time-lock puzzle[MT19],[BDG+19]

Application

A non-malleable commitment from a time-lock puzzle[LPS17]

There are few works on the security models of time-lock puzzles.

Our Contribution

1. we define new security for timelock puzzles (semantic security).

2. we investigate the security relationship for time-lock puzzles.

correctness:

$$PSolve(PGen(1^k, T, m)) = m$$

Indistinguishability[BGJ+16]

 (m_0,m_1)

Challenger

Adversary

Indistinguishability[BGJ+16]

Challenger

$$b \leftarrow \{0,1\}$$
$$Z \leftarrow PGen(1^k, T, m_b)$$

$$\xrightarrow{Z}$$

Adversary

Indistinguishability[BGJ+16]

Challenger

$$b \leftarrow \{0,1\}$$
$$Z \leftarrow PGen(1^k, T, m_b)$$

$$b = b'$$
?

Adversary

Time-lock puzzle

Security Requirement = Indistinguishabiility?

Public-key encryption

Security Requirement
 Information about plaintext = Semantic Security
 does not leak from ciphertext.

Public-key encryption

- Security Requirement Information about plaintext = Semantic Security does not leak from ciphertext.

Indistinguishability

Time-lock puzzle

Security Requirement = Semantic Security

= Indistiguishability?

What is Semantic Security?

Real World

Real World

Relationship between indistinguishability and semantic security?

Public-key Encryption indistiinguishability = semantic security is provable

Relationship between indistinguishability and semantic security?

Public-key Encryption indistiinguishability = semantic security is provable.

Time-Lock Puzzle

It is difficult to show the relationship between indistinguishability and semantic security.

Relationship between indistinguishability and semantic security?

Public-key Encryption

Computational restriction poly(k)

Time-Lock Puzzle Computational restriction T^{ϵ} or less

Relationship between indistinguishability and semantic security?

Let's relax the restriction T^{ϵ}

• (Adversary's computational time) $\leq T^{\epsilon}$

 $SS \Rightarrow IND \times IND \Rightarrow SS \times$

(Adversary's computational time) ≤ T^ε
 SS ⇒ IND × IND ⇒ SS ×

• (Adversary's computational time) $\leq T^{\epsilon} + \mathcal{O}(1)$ SS \Rightarrow IND \bigcirc IND \Rightarrow SS \times

(Adversary's computational time) ≤ T^ε
 SS ⇒ IND × IND ⇒ SS ×

- (Adversary's computational time) $\leq T^{\epsilon} + \mathcal{O}(1)$ SS \Rightarrow IND \bigcirc IND \Rightarrow SS \times
- (Adversary's computational time) = $\mathcal{O}(T^{\epsilon})$ SS \Rightarrow IND \bigcirc IND \Rightarrow SS \bigcirc

Summary

- 1 .Definition of Semantic Security
 We define semantic security for time-lock puzzles.
- 2. Security Relationship between IND and SS Provability depends on the adversary's computational restriction.
 - Open problem
 - Which computational restrictions should be used in the definition?
 - Operine and formulate security for time-lock puzzles other than indistinguishability and semantic security