In_xGa_{1-x}As High-Electron Mobility Transistors for Terahertz frequency applications

Hyeon-Bhin Jo
ICT Device & Packaging
Research Center
Korea Electronics Technology Insitute
Sungnam, Republic of Korea
hyeon-bhin.jo@keti.re.kr

Soo-Chang Chae
ICT Device & Packaging
Research Center
Korea Electronics Technology Institute
Sungnam, Republic of Korea
sc.chae@keti.re.kr

Ki-Jin Kim
ICT Device & Packaging
Research Center
Korea Electronics Technology Institute
Seongnam, Republic of Korea
sergeant@keti.re.kr

Kwang-Ho Ahn
ICT Device & Packaging
Research Center
Korea Electronics Technology Institute
Seongnam, Republic of Korea
khajoh@keti.re.kr

Abstract—This paper reviews the state-of-the art $In_xGa_{I-x}As$ high electron mobility transistors (HEMTs) for future terahertz frequency operations, aiming to propose roadmap of next-generation $In_xGa_{I-x}As$ HEMT technology. We propose the physics-based compact model for device RF performance such as current gain cut-off frequency (f_T) and maximum osciallation frequency (f_{max}) . Also, we quantitantly predict the device performance of sub-30 nm $In_xGa_{I-x}As$ HEMTs with innovatively improving parasitic resistance (R_s) and capacitances components to reach f_T/f_{max} over 1 THz.

Keywords—InGaAs, compound semiconductor, HEMTs, cutoff frequency (ft), maximum oscillation frequency(fmax)

I. Introduction

For several decades, semiconductor-based Terahertz (THz) microelectronics promise to introduce new areas of research and applications in the sub-millimeter-wave region (sub-MMW) and beyond [1-4]. In order to fully benefit the sub-MMW band, it is essential to develop semiconductor transistor technologies with both current gain cut-off frequency (f_T) and maximum oscillation frequency (f_{max}) close to 1 THz. To improve high-frequency characteristics of semiconductor transistor, historically, a path to improve f_T/f_{max} in InGaAs high-electron-mobility transistors (HEMTs) was to reduce the physical gate length (L_g) down to sub-30 nm, while minimizing all of the parasitic components such as series resistance and gate-fringing capacitance. The other is to introduce high carrier mobility channel material. In this regard, indium-rich In_xGa_{1-x}As HEMTs have offered the best balance of f_T and f_{max} to date [5-6].

II. Developments and Analysis in InGaAs HEMTs

A. State-of-the art InGaAs HEMTs

Figure 1 shows the cross sectional schematic view of a conventional $In_xGa_{I-x}As$ HEMT. Semi-insulating (S.I) InP wafer of 3-inch size is commonly used in the fabrication of $In_xGa_{I-x}As$ HEMTs. It is imperative to develop InGaAs HEMTs of gate length less than 30 nm for terahertz wave applications. $In_xGa_{I-x}As$ HEMT technology could already achieve a f_T of 738 GHz [5] and f_{max} over 1 THz [3] which raises the hope for its use in future terahertz wave applications. **Figure 2** plots $|h_{2I}|^2$ and U_g for state-of-the art HEMT technology with various QW channel structure and gate length scaling from 300 to 20 nm [5]. As expected, both f_T and f_{max}

Figure 1. Schematic of conventional $In_xGa_{1-x}As$ HEMT.

improved with reduction of L_g . The composite-In_{0.8}Ga_{0.2}As HEMT demonstrated the values of $f_T = 738$ GHz and $f_{max} = 492$ GHz. **Figure 3** shows the dependence of f_T and f_{max} for all the devices upon L_g .

Figure 2. Measured RF gains ($|h_{2l}|^2$, U_g and MAG) versus frequency near the g_m peak gate voltage and at $V_{DS} = 0.5$ V.

Figure 3. Measured (symbols) and modeled (lines) f_T/f_{max} against L_g .

B. f_T/f_{max} phyiscal model

In an effort to understand the scaling behavior of f_T and f_{max} , the compact f_T/f_{max} physical model using physical/geometrical parameters. The first-order expressions for f_T and f_{max} are given as follows [7-8]:

$$f_T = \frac{1}{2\pi} \frac{g_{mi}}{c_{gs} + c_{gd} + g_{mi}(R_S + R_D) \left\{ c_{gs} + (c_{gs} + c_{gd}) \frac{g_{oi}}{g_{mi}} \right\}} \tag{1}$$

$$f_{max} = \frac{f_T}{2\sqrt{(R_i + R_S + R_g) \cdot g_{oi} + (2\pi f_T) \cdot R_g \cdot C_{gd}}}$$
(2)

The values of g_{mi} , R_S , and R_D were extracted as in R_S analysis [9] and g_m physical modeling [10], and g_{oi} was given by the product of g_{mi} and DIBL was used. As in [5], C_{gs} consisted of $C_{gs_areal} \times L_g$ (intrinsic) and C_{gs_ext} (extrinsic) components, where C_{gs_ext} was extracted separately at a pinch-off bias condition since C_{gs} was dominated by extrinsic components. The same analysis was performed for C_{gd} .

Modeled f_T and f_{max} are included as lines in **Figure 3**, where the approach in this work explains the dependence of f_T and f_{max} of all the devices upon L_g from 300 to 20 nm. The proposed f_T/f_{max} model is capable of explaining the measured f_T and f_{max} for all the devices universally.

Figure 4. f_T/f_{max} modeling result of device technology improvement (model projection).

III. $In_xGa_{1-x}As$ HEMTs for terahertz f_T/f_{max} performacne

The proposed physical f_T/f_{max} model accurately explain the measured f_T/f_{max} for all of L_g . So, by using physical f_T/f_{max} model, projection of the f_T/f_{max} characteristics of a device with improvement such as carrier transport property, reduction of R_S , and g_{oi} improvement, could be compared to current stateof-the art In_xGa_{1-x}As HEMTs devices. In projection 1, when R_S was reduced by 30%, it can be projected to improvement of about 15 % compared to conventional state-of-the art devices with $f_T/f_{max} = 800/870$ GHz at $L_g = 30$ nm. In projection 2, when R_S and extrinsic gate capacitance (C_{g_ext}) were reduced to less than half, projected a value of f_T/f_{max} is 1.02/1.09 THz with improvement of about 40 % compared to state-of-the art In_xGa_{1-x}As HEMT device. Figure 4 exhibit projection results of f_T/f_{max} as a function of L_g with current state-of-the art HEMTs (black), R_s reduction (projection 1, orange), R_s and C_{g_ext} reduction (projection 2, blue). For future THz operation device technology, it is important to demonstrate sub-30 nm In_xGa_{1-x}As HEMTs with innovatively improving parasitic resistance components (R_s) and, also, reduction of parasitic gate capacitance to reach f_T/f_{max} over 1 THz, as predicted f_T/f_{max} performance through physical modeling.

IV. Conclusion

In this paper, we reviewed the state-of-the art $In_xGa_{I-x}As$ high electron mobility transistors (HEMTs) for future terahertz frequency operations. Also, we modeled physically experimental RF FOMs (Figure of Merits) with state-of-the art $In_xGa_{I-x}As$ HEMT technology. Also, we quantitantly predict the device performance of sub-30 nm $In_xGa_{I-x}As$ HEMTs with innovatively improving parasitic resistance components (R_s) to reach f_T/f_{max} over 1 THz.

ACKNOWLEDGMENT

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP). [2020-0-00459, Development of RF Front end module components supporting sub 6GHz dual band for 5G terminal based on compound semiconductor]

REFERENCES

- E.-Y. Chang et al., "InAs Thin-Channel High-Electron-Mobility Transistors with Very High Current-Gain Cutoff Frequency for Emerging Submillimeter-Wave Applications", APEX, 034001, 2013.
- Y. Shiratori et al., "High-speed InP/InGaAsSb DHBT on high-thermalconductivity SiC substrate", IEEE EDL, vol. 39, pp. 807-810, 2018.
- [3] R. Lai et al., "Sub 50 nm InP HEMT device with F_{max} greater than 1 THz", IEDM, pp. 609-611, 2007.
- [4] S. B. Kang et al., IEEE RFIT, pp. 25-27, 2017.
- [5] H.-B. Jo *et al.*, " $L_g = 19 \text{ nm In}_{0.8}\text{Ga}_{0.2}\text{As composite-channel HEMTs}$ with $f_T = 738 \text{ GHz}$ and $f_{max} = 492 \text{ GHz}$ ", IEDM, pp. 841-844, 2020.
- [6] H.-B. Jo et al., "L_g = 25 nm InGaAs/InAlAs high-electron mobility transistors with both f_T and f_{max} in excess of 700 GHz", APEX, 054006, 2019
- [7] P. J. Tasker *et al.*, "Importance of source and drain resistance to the maximum f_T of millimeter-wave MODFETs", *IEEE EDL*, vol. 10, pp. 291-293, 1989.
- [8] S. M. Sze et al., "Physics of Semiconductor Devices", Wiley, 1981.
- [9] S.-W. Yun, H.-B. Jo et al., "In_xGa_{1-x}As quantum-well high-electron-mobility transistors with a record combination of f_T and f_{max}: From the mobility relevant to ballistic transport regimes", IEDM, pp. 11.3.1-11.3.4, 2021.
- [10] I.-G. Lee et al., JKPS, vol. 78 pp. 516-522, 2021.