

강의개요

Synthetic biology and AI

합성생물학은 생물학, 공학, 컴퓨터 과학을 결합하여 효소, 생합성 경로, 또는 전체 생물학적 개체를 설계하고 구축하는 매우 다학제적인 분야이다. 그 목표는 새로운 생물학적 시스템을 창조하거나 기존 시스템을 유용한 목적으로 재설계하는 것이며, 이 과정에서 생물학적 도구를 설계할 때 모듈성, 표준화, 확장성이 중요하게 고려된다.

본 강의에서는 합성생물학의 배경을 먼저 설명하고, 합성생물학이 적용 가능한 다양한 분야 중 바이오제조와 대사공학을 중심으로 소개하고자 한다. 또한 이 과정에서 AI가 수행하는 핵심적인 역할을 설명한다. 특히 미생물 대사공학의 목표가 대사 네트워크와 생산 공정 전반을 통합적으로 분석하고 최적화하여 고수율·고생산성 균주를 개발하는 데 있음을 설명한다. 이를 위해 균주 설계부터 공정 최적화까지 전 과정을 포괄하는 10가지 전략을 체계적으로 소개한다. 더불어 이 과정에서 유용하게 활용될 수 있는 대사 네트워크 모델(genome-scale metabolic model)에 대해서도 이론과 실습을 제공한다. 본 강의에서 소개되는 개념과 방법론은 약물 표적 발굴 등 시스템 의학 분야에도 적용 가능하다.

강의는 다음의 내용을 포함한다:

- 합성생물학 기반 바이오제조
- 대사공학 전략
- 대사 네트워크 모델 (Genome-scale metabolic model)
- 합성생물학과 AI 실습

*참고강의교재:

해당 논문은 수업자료를 통해서 공유 예정

*교육생준비물:

노트북 (메모리 8GB 이상, 디스크 여유공간 30GB 이상)

* 강의 난이도: 초급/중급

* 강의: 김현욱 교수 (KAIST 생명화학공학과)

Curriculum Vitae

Speaker Name: Hyun Uk Kim, Ph.D.

► Personal Info

Name	Hyun Uk Kim
Title	Associate Professor
Affiliation	KAIST
► Contact Information	
Address:	291 Daehak-ro, Yuseong-gu, Daejeon 34141
Email:	ehukim@kaist.ac.kr

Research interest : Systems biology, Biological networks, Synthetic biology, Systems medicine

Educational Experience

2005	B.S., Biotechnology, Yonsei University, Seoul, Korea
2007	M.S., Chemical & Biomolecular Engineering, KAIST, Daejeon, Korea
2011	Ph.D., Chemical & Biomolecular Engineering, KAIST, Daejeon, Korea

Professional Experience

2023 – Present	Adjunct Professor, Graduate School of Engineering Biology, KAIST, Daejeon, Korea
2022 – Present	Adjunct Professor, BioProcess Engineering Research Center, KAIST, Daejeon, Korea
2018 – Present	Assistant and Associate Professor, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, Korea
2014 – 2016	Visiting Senior Researcher, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
2011 – 2018	Postdoctoral Researcher and Research Assistant Professor, BioInformatics Research Center, KAIST, Daejeon, Korea

Selected Publications (3 maximum)

1. Lim J¹, Jung HD¹, Park SY, Jeon M, Kim DS, Cho R, Han D, Ryu HS, Kim Y* & Kim HU*. Genome-scale knockout simulation and clustering analysis of drug-resistant breast cancer cells reveal drug sensitization targets. *Proceedings of the National Academy of Sciences U S A (PNAS)* 122, e2425384122 (June 2025)
2. Kwon MS¹, Lee J¹ & Kim HU. A machine learning framework for extracting information from biological pathway images in the literature. *Metabolic Engineering* 86, 1-11 (November 2024)
3. Lee G¹, Lee SM¹, Lee S, Jeong CW, Song H, Lee SY, Yun H*, Koh Y*, Kim HU*. Prediction of metabolites associated with somatic mutations in cancers by using genome-scale metabolic models and mutation data. *Genome Biology* 25, 66 (March 2024)