
AI 모델 공급망 보안을 위한 컨텍스트 인지 eBPF 기반 역직렬화 공격 차단 기법

이선우1, 김민찬2, 김수하1, 박민서1, 최우현1, 윤승현1

1한국에너지공과대학교, 2전남과학고등학교

{sunwoolee, water03, westpark, woohyunchoi, syoon}@kentech.ac.kr

jshs251403@h.jne.go.kr

Context-Aware eBPF-Based Blocking of Deserialization Attacks for AI Model
Supply Chain Security

Sunwoo Lee1, Min Chan Kim2, Suha Kim1, Minseo Park1, Woo-Hyun Choi1, and Seunghyun Yoon1

1Korea Institute of Energy Technology (KENTECH)

2Jeonnam Science High School

요 약

 본 논문은 AI 모델공급망에서 유통되는 PyTorch 모델 아티팩트를 torch.load()로 로딩하는과정에서, pickle 기반역직렬화
가 악성 아티팩트에 의해 로딩 시점 임의 코드 실행으로 악용될 수 있는 보안 위험을 다룬다. 기존 정적 분석 스캐너는 파일
내부의 정적 특징에 의존하므로 모듈 구성·호출 경로 변경 등 표현 변형에서 탐지 누락이 발생할 수 있으며, 외부 저장소·모델
허브 기반 재사용이 일반화된 공급망 환경에서 특히 문제가 된다. 이를 보완하기 위해, 본 논문은 eBPF 기반 BPF-LSM으로
커널 정책을 주입해 로딩 중 민감 시스템 행위를 차단하는 동적 방어 기법을 제안한다. 로딩 구간은 .pt 파일의 읽기 시스템콜
openat부터 close까지로 정의하고 해당 구간에서만 정책을 강제하여 정상 추론 단계의 영향과 오탐을 최소화한다. 통제 대상은
프로세스실행·외부네트워크연결·파일쓰기로 한정하며, 차단 이벤트는커널 로그로기록해 사후분석에 활용한다. 데모 실험을
통해정적스캐너가 탐지하지못하는 경우에도제안기법이로딩시점의 실제행위를 기반으로공격을 차단할 수있음을 보인다.

Ⅰ. 서 론

 최근 AI 모델은 HuggingFace와같은외부저장소·모델허브를통해파일

형태로배포·공유되는공급망환경이확산되었으며, PyTorch에서는모델

체크포인트를 torch.load()로 로딩하는 방식이 널리 사용된다. 그러나

torch.load()는 pickle 기반역직렬화를수행하므로, 악의적으로조작된모델

아티팩트를 로딩하는 것만으로도 임의 코드 실행으로 악용될 수 있으며,

PyTorch의 torch.load() 동작과관련된RCE 취약점(CVE-2025-32434 등)

이보고된바있다[1]. 한편 picklescan과같은정적분석스캐너는파일

내부의정적 표현과아카이브·메타데이터처리에의존하므로, 표현변형뿐

아니라 압축 컨테이너 조작을 통해 탐지를 우회할 수 있는 사례

(CVE-2025-1945 등)가보고되었고[2], 모델공급망전반에서이러한아

티팩트기반위험이반복적으로관찰된바있다[3].

 본연구는 .pt 모델파일의읽기 openat부터 close까지시스템콜관측을

통해로딩컨텍스트를식별하고, eBPF(extended Berkeley Packet Filter)

를통해 LSM(Linux Security Module) 훅에정책을주입하는 BPF-LSM

방식으로 로딩 중 보안상 민감한 시스템 행위를 커널 수준에서 차단하는

기법을제안한다. 통제대상은프로세스실행(execve/execveat), 외부연

결(connect), 파일쓰기(쓰기플래그를동반한 open)로한정한다. 또한표

현 변형(모듈, 호출 경로 변경 등)이 적용된 시나리오에서 정적 스캐너가

탐지를놓치는경우에도, 로딩시점의행위기반통제가유효함을보인다.

Ⅱ. 위협 모델

 위협모델은그림 1과같이외부저장소또는모델허브에서유입된사전

학습모델을로딩하는AI 플랫폼환경을가정한다[4]. 공격자는정상모델로

그림 1. 위협모델과제안하는방어기법

위장한 아티팩트를 배포하거나 유통 과정에서 이를 변조해, 사용자가

torch.load()로 로딩하는 시점에 프로세스 실행, 외부 연결, 파일 쓰기·생

성 등의 시스템 행위를 유발함으로써 원격 코드 실행, 정보 유출, 지속성

확보를시도한다.

Ⅲ. 제안하는기법

 제안하는 기법은 그림 1과같이모델로딩컨텍스트에서만 커널 수준 정

책을적용하는컨텍스트기반통제방식이다. 핵심은 torch.load() 실행구

간을 기준점으로 삼아, 해당 구간에서만 프로세스의 시스템 자원 접근을

제한함으로써역직렬화기반공격이운영체제수준행위로전개되는단계

를 차단하는 데 있다. 이를 위해 표 1과 같이 로딩 컨텍스트를 추적하는

계측 단계와 커널 접근 제어 지점에서 정책을 강제하는 단계가 결합된다.

먼저컨텍스트게이팅은 torch.load()를 .pt 파일의읽기시스템콜 openat와

close를관측해로딩구간을정의한다. loading_state[tgid]는 open 시증

가·close 시 감소하는 참조 카운트로 갱신되며, loading_state[tgid] > 0

인 동안 로딩 중으로 간주해 중첩 로딩에도 안정적으로유지된다. 이처럼

정책적용범위를로딩구간으로한정함으로써관측·판단의탐색공간을 축

소하고, 로딩종료시즉시정책을해제하여정상실행에대한영향을 최소

화한다. 다음으로 행위 강제는 BPF-LSM 훅에서 loading_state[tgid]를

확인한후로딩중에한해보안상민감한시스템행위를차단한다. 구체적

으로프로세스실행은 bprm_check_security 훅에서 execve·execveat를

차단하여 외부 명령 실행과 서브 프로세스 생성을 억제하고, 외부 연결은

socket_connect 훅에서 IPv4·IPv6 connect()를차단하여C2 통신및외부

유출 경로를 봉쇄한다. 파일 쓰기는 file_open 훅에서 O_WRONLY,

O_RDWR, O_CREAT, O_TRUNC, O_APPEND 등 쓰기 목적 플래그

를차단하여파일변조와지속성확보를방지한다.

구성요소 메커니즘 통제 대상

Context

Gating

· tracepoint로 .pt 읽기 시스템콜

openat부터 close를 관측해 로딩 구간 식별

· loading_state[tgid]를 refcount로 갱신

tracepoint

기반컨텍스트

식별

프로세스

실행 통제

· 로딩 중(loading_state[tgid] > 0)이면

execve, execveat 차단

bprm_

check_

security

외부 연결

통제
· 로딩 중이면 IPv4·IPv6 connect() 차단

socket_

connect

파일 쓰기

통제

· 로딩 중이면 쓰기 목적

플래그(O_WRONLY, O_RDWR,

O_CREAT, O_TRUNC, O_APPEND

등)를 동반한 open/openat 차단

file_open

표 1. 제안기법구성요소및커널훅매핑

Ⅳ. 실험

 본 절에서는 정적 분석 기반 스캐너와 로딩 컨텍스트 기반 행위 통제가

어떤상황에서 차이를보이는지 확인한다. 정적 분석은 모델파일 내부의

시그니처·opcode·블록리스트등표현적단서에기반해탐지하는반면, 제

안 기법은 동일 파일을 torch.load()로 로딩하는 과정에서 발생하는 시스

템수준행위를기반으로차단여부를기록한다. 따라서파일내부표현이

나 Python 레벨호출경로가달라지더라도동일한목표행위가로딩시점

에발생하면차단이유지되는지검증한다.

 실험은Ubuntu 24.04.3 LTS에서Linux kernel 6.11.0-26-generic 환경

으로 수행하였으며, PyTorch 2.9.0+cpu를 사용하였다. 정적 스캔은

picklescan 0.0.35로 모델 파일을 사전 검사해 탐지(Detect) 또는 미탐

(Miss)으로 기록하였다. 이후 제안 기법을 활성화한 상태에서 동일 파일

을 torch.load()로로딩하여차단(Block) 또는허용(Allow) 여부를기록하

였고, 차단이발생한경우커널 ring buffer에기록된이벤트타입을함께

저장해 근거로 사용하였다. 테스트 데이터셋은 본 연구에서 직접 생성한

.pt 모델 아티팩트 6개로 구성하였다. 표 2와 같이 세 개의 케이스(T1–

T3)를정의하고, 각케이스마다동일한목표행위를유발하는두가지구

현을 준비하였다. 하나는정적 스캐너가 비교적 탐지하기쉬운 형태로 구

성하고, 다른하나는파일의정적특징이약해지도록호출모듈또는표현

을변경하되최종목표행위는동일하게유지하였다. 구체적으로 T1은명

령실행, T2는네트워크연결, T3는파일쓰기를목표로하며, 각구현에

서 picklescan이보고하는호출모듈은달라질수있다.

 표 2의결과에서 picklescan은 6개중 3개만탐지한반면 3개는탐지하지

못하였다. 반면제안기법은 6개모두에서로딩중시도된행위를차단하였다.

이는 Python 레벨 호출 모듈이 달라도 실제 실행은 execve·execveat,

connect, 쓰기플래그를동반한 open·openat 등동일한커널경로로수렴

하기 때문이며, 로딩 컨텍스트에서 해당 경로를 통제하는방식이표현 변

화로인한탐지성능저하를완화할수있음을보여준다.

Case
목표

행위
pickle에서 호출된 모듈

실험 결과
picklescan 제안 기법

T1
명령

실행

posix.system Detect Block

gzip.open

→ execve
Miss Block

T2

네트

워크

연결

socket.create_conne

ction
Detect Block

telnetlib.Telnet Miss Block

T3
파일

쓰기

builtins.open Detect Block

logging.FileHandler Miss Block

표 2. 실험결과

Ⅴ. 결론

 본 논문은 torch.load() 역직렬화 과정에서 가능한 RCE를 완화하기 위

해, 정책 적용을 로딩 시점으로 한정해 커널 관측·정책 탐색 공간을 축소

하는 BPF-LSM 기반 차단기법을 제안한다. 로딩 컨텍스트는 .pt 파일의

읽기 openat부터 close로 정의하고, 해당구간에서 exec, connect, 파일

쓰기 등 민감 행위를 차단한다. 실험을 통해 정적 스캐너가 놓치는 표현

변형 상황에서도 행위 기반 차단이 가능함을 보였으며, 향후에는 로딩 이

후 지연 트리거까지 포착하도록 확장할 예정이다.

ACKNOWLEDGMENT

본 논문은 과학기술정보통신부 정보통신기획평가원에서 지원한 국산 AI

반도체기반마이크로데이터센터 운영 및확산기술 개발 과제로 수행된

연구임 (과제번호: RS-2025-25457382)

참 고 문 헌

[1] National Vulnerability Database, “CVE-2025-32434,” NIST, Apr. 2025,

[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2025-32434.

[Accessed: Jan. 11, 2026].

[2] National Vulnerability Database, “CVE-2025-1945,” NIST, Apr. 2025,

[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2025-1945.

[Accessed: Jan. 11, 2026].

[3] W. Jiang, N. Synovic, R. Sethi, A. Indarapu, M. Hyatt, T. R. Schorlemmer,

G. K. Thiruvathukal, and J. C. Davis, “An empirical study of artifacts and

security risks in the pre-trained model supply chain,” Proceedings of

the ACM Workshop on Software Supply Chain Offensive Research and

Ecosystem Defenses (SCORED), pp. 105–114, 2022.

[4] A. K. Sood and S. Zeadally, “Malicious AI models undermine software

supply-chain security,” Communications of the ACM, vol. 68, no. 6, pp. 62–71,

2025.

