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요 약  

 
최근 리튬 이온 배터리의 건강 상태(State of Health, SOH)를 정확하게 추정하는 것은 전기차(EV) 및 에너지 저장 장치

(ESS)의 안전한 운용과 잔여 수명 예측을 위한 핵심 과제이다. 본 논문에서는 실제 운행 환경의 불규칙한 방전 데이터가 

가지는 한계를 극복하기 위해, 전기차의 정전류 충전 과정 중 발생하는 전압 궤적 데이터를 입력으로 Multi-Task 

Transformer 의 예측 결과와 결합하여 SOH 추정 성능을 개선하는 아키텍처를 제안한다. MIT 데이터셋을 활용한 실험 결

과, 제안된 모델은 기존 Transformer 단독 모델 대비 RMSE 12.90%, MAE 13.34%의 성능 향상을 달성하였고, 배터리 상

태 진단 정확도는 88.25%로 5.80%p 향상되었으며, F1-Score 는 0.7456 으로 0.0699 만큼 개선되었다. 이는 전압 궤적의 

기울기 변화율 기반의 이상치 점수가 용량 감소 학습의 한계를 보완하는 보조 인자임을 입증하며, 향후 실시간 배터리 관

리 시스템(BMS)의 정밀도 향상에 기여할 것으로 기대된다. 
 

 
Ⅰ. 서론  

최근 리튬 이온 배터리의 건강 상태(State of Health, 

SOH)를 정확하게 추정하는 것은 전기차(EV) 및 에너지 

저장 장치 (ESS)의 안전한 운용과 잔여 수명 예측을 위

한 핵심 과제이다. 일반적으로 배터리의 SOH 추정은 충

전 혹은 방전 과정에서 수행되지만, 실제 운행중인 전기

차의 경우 방전 데이터가 불규칙하게 발생하기에, 이를 

실시간 추정에 활용하기에는 어렵다는 문제점이 있다[1]. 

본 논문에서는 이러한 한계점을 극복하기 위해 전기차

의 정적 상태인 충전 과정 중 발생하는 데이터에 주목하

였고, 전압 곡선의 기울기가 커지는 현상을 이상치 탐지 

관점에서 해석하여 이를 딥러닝 모델의 예측 결과와 결

합하여 SOH 추정 성능을 개선하고자 한다[2]. 

 

Ⅱ. 데이터 전처리 및 제안 모델 구조 

본 연구에서 제안하는 모델의 입력은 전압(𝑉), 전류(𝐼), 

그리고 용량 변화량(ΔQ)으로 구성된 시계열 벡터 [𝑉 , 𝐼 , 

ΔQ]를 사용한다. 여기서 용량 변화량 ΔQ 은 식 (1)과 같

이 정의된다. 

 ΔQ(𝑘)  =  ∫ 𝐼(𝜏)
𝑡𝑘

𝑡𝑠𝑡𝑎𝑟𝑡

𝑑𝜏 ≈ ∑ 𝐼𝑖

𝑘

𝑖=1

∙ Δ𝑡 (1) 

식(1)에서 𝐼𝑖 는 전류, Δ𝑡  는 샘플링 주기를 의미한다. 

𝑉 − ΔQ  평면상에서 정의된 전압 궤적은 배터리 내부의 

상전이 현상과 용량 저하를 기하학적 형상 변화로 직접 

투영하며, 이는 다양한 C-rate 환경에서도 노화 상태가 

동일하다면 유사한 곡선 형태를 유지하는 불변성을 제공

한다. 결과적으로 이러한 변환은 모델이 전류 크기라는 

외부 잡음에서 벗어나 배터리 본연의 노화 상태 및 전압 

 
[그림 1] Multi-Task Transformer 아키텍쳐 

 

기울기 변화를 식별하게 하는 핵심적인 기제로 작용한다. 

[그림 1]은 본 논문에서 제안하는 전체 모델 아키텍처

를 나타낸다. 본 연구에서 Transformer 는 [그림 1]과 

같이 공유된 인코더를 통해 고차원 특징을 추출한 뒤 이

를 두 개의 독립적인 헤드로 전달하여 병렬적인 태스크

를 수행하는 구조를 가진다. 

Transformer 의 Self-Attention 메커니즘은 시퀀스 전

체를 관통하는 전역적 형상을 파악하는 데 탁월한 성능

을 발휘한다. 3 차원 입력 벡터인 [ 𝑉 , 𝐼 , ΔQ ]는 

Transformer 의 인코더를 거쳐, 전압 상승 곡선의 곡률 

변화와 SOH 간의 고차원적인 비선형 상관관계를 특징 

벡터로 압축한다[3]. 

제안 모델은 실제 전기차의 운용 특성을 반영하기 위

해 두 가지 태스크를 학습한다. 먼저 Phase Head 는 입

력된 시퀀스가 배터리의 운전 상태인 휴지, 정전류 충전

(CC), 정전압 충전(CV), 방전 중 어느 단계에 해당하는

지를 분류한다. 이는 모델이 스스로 정전류 구간을 식별



 

하고, Soft Masking 기법을 통해 해당 구간의 특징만을 

강조하여 SOH 예측에 활용하도록 하는 가이드 역할을 

수행한다. 다음으로 SOH Head 는 Phase Head 에 의해 

가중된 특징 벡터만을 입력 받아 1 차적인 SOH 값을 예

측하며, 이때 평균 제곱 오차(Mean Squared Error, MSE)

를 최소화하는 방향으로 학습된다. 

본 연구에서는 Transformer 가 추출한 정전류 충전 단

계의 특징 벡터를 기반으로 Isolation Forest 를 학습시켜 

배터리의 물리적 건전성을 평가하고, 이를 최종 예측 보

정에 활용한다. 모델 학습 단계에서는 SOH 가 99% 이상

인 초기 셀 데이터로부터 CC 구간의 잠재 특징을 추출

하여 Isolation Forest 의 기준 분포로 삼는다. 이후 추론 

단계에서 입력된 특징 벡터가 학습된 정상 분포로부터 

얼마나 벗어났는지를 나타내는 이상치 점수를 산출한다. 

이는 전압 궤적의 기울기가 기준에서 벗어날수록 높은 

점수로 나타나며 물리적 퇴화 정도를 반영한다. 

최종적으로 산출된 이상치 점수는 Transformer 의 

1 차 예측값과 함께 GBR(Gradient Boosting Regressor) 

보정기에 주입되어 딥러닝 모델이 데이터 편향으로 인해 

놓칠 수 있는 물리적 퇴화 징후를 이상치 점수를 통해 

교정함으로써 최종 SOH 값을 도출한다. 

 

Ⅲ. 실험 과정 및 결과 

 본 연구의 타당성을 검증하기 위해 MIT-Stanford-

Toyota Battery Dataset 을 활용하였다[4]. 이 데이터셋

은 A123 Systems 에서 제조한 LFP/graphite 리튬 이온 

배터리(APR18650M1A)를 대상으로 하며, 각 셀은 1.1 

Ah 의 공칭 용량과 3.3 V 의 공칭 전압을 가진다. 실험은 

140 개의 셀 데이터를 대상으로 전체 데이터를 학습

(60%), 검증(20%), 테스트(20%)로 분할하여 수행하였다. 

이때 테스트 데이터는 학습과 검증단계에서 사용되지 않

은 충전 정책을 기준으로 분류하였다. 

<표 1>은 Transformer 모델과 제안 모델의 성능 지

표 및 향상률을 통합하여 나타낸다. 모든 지표는 후처리 

필터링이 적용되지 않은 Raw 데이터를 기준으로 산출되

었다. 

실험 결과, 제안 모델은 기존 Transformer 모델 대비 

RMSE 는 12.90%, MAE 는 13.34%만큼 성능 향상을 달

성하였다. [그림 2]는 테스트 데이터에 대한 SOH 추정 

결과 그래프를 나타내며, 제안 모델이 실제 SOH 궤적을 

매우 정밀하게 추정하고 있음을 보여준다. 

 

<표 1> 모델 구성에 따른 성능 지표 결과 
MODEL RMSE [%] MAE [%] 

Transformer 1.46 1.05 

Multi-Task Transformer 1.27 0.91 

Improvement 12.90% 13.34% 

 

 
[그림 2] 테스트 데이터 SOH 추정 결과 

<표 2> 진단 적중률 및 EOL 분류 성능 비교 

Metrix Transformer 
Multi-Task 

Tansformer 
Improvement 

Accuracy 

(±2%) 
82.45% 88.25% 5.80%p 

F1-Score 

(EOL, <85%) 
0.6757 0.7456 0.0699 

 

추가로 본 연구에서는 모델의 실용적 신뢰성을 평가하

기 위해 배터리 상태 진단 관점에서 성능 분석을 수행하

였다. <표 2>는 실제 SOH대비 오차범위 ±2% 이내를 적

중시킨 비율과 수명 종료(End of Life, EOL) 상태 분류 

성능을 나타낸다. 이때 MIT 데이터셋의 EOL 은 80%로 

정의되어 있지만, 성능 지표를 나타내기 위하여 임의로 

EOL 85%로 선정하였다.  

분석 결과, 제안 모델은 Transformer 대비 높은 적중

률을 기록하였는데 이는 GBR 보정기가 Isolation Forest

로부터 전달받은 물리적 이상치 점수를 활용하여 딥러닝 

모델 특유의 데이터 편향 오차를 효과적으로 억제했기 

때문이다. 또한 F1-score 역시 크게 개선되는 것을 확인

하였다. 이는 노화에 따른 전압 곡선 기울기 변화가 이상

치 점수에 반영됨으로써, 딥러닝 모델이 간과할 수 있는 

급격한 용량 저하 지점을 물리적 근거로 보완하여 EOL 

상태의 셀을 정확히 식별하는 재현율을 높였음을 입증한

다. 

 

Ⅳ. 결론  

본 논문에서는 충전 시의 전압 궤적 변화를 이상치 점

수로 환산하여 배터리 SOH 추정의 정밀도를 개선하는

Multi-Task Transformer 아키텍처를 제안하였다. 실험

을 통해 배터리의 SOH 추정 결과는 전체 용량의 감소에 

의해 지배적인 영향을 받지만, 용량 변화에 따른 학습이 

포화된 시점에서는 전압 곡선의 기울기 변화율을 반영한 

파라미터가 미세한 오차를 교정하는 보조 인자로 작동함

을 확인하였다. 결론적으로 제안된 모델은 실제 전기차 

충전 환경에서 획득 가능한 데이터만을 활용하였을 때의 

SOH 추정의 신뢰성을 확보할 수 있음을 입증하였으며, 

이는 향후 실시간 배터리 관리 시스템의 정밀도 향상에 

크게 기여할 것으로 기대된다. 
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