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요 약  

 
신호 추정은 통신시스템에서 핵심 문제이며, 대표적으로 zero forcing 추정 방식과 최소 평균 제복 

추정 방식이 있다. 이 두 방식은 각각의 오차를  최소화하는 다른 방식으로 보인다. 하지만, 벡터 공간에 
내적이 정의된 내적 공간에서 신호를 해석하면, 직교성 원리를 적용하는 하나의 방식으로 해석할 수 있다. 

본 논문은 내적이라는 단일한 수학적인 틀을 이용하여 춪벙 문제를 해석하는 방식을 기술하여, 다양한 

환경에서 쉽게 문제를 접근하는 방안을 제공한다.    

 

Ⅰ. 서 론  

무선통신 시스템의 설계와 최적화는 본질적으로 

불확실한 채널 상황에서 정보를 복원하는 문제로 

귀결된다. 즉, 신호 추정은  통신시스템에서 핵심 

문제이다. 신호 추정의 가장 일반적인 방식은 zero 
forcing(ZF) 추정 방식과 최소 평균 제곱(MMSE, 

minimum mean square) 추정 방식이다. ZF 추정은 

신호와 추정치의 차이인 오차를 최소화 방식으로, 

시스템에 존재하는 간섭을 ‘0’으로 강제하게 된다. 

MMSE 추정은 오차의 평균 제곱 크기를 최소화하는 
방식이다. 두 방식은 상이한 목표를 추구하는 다른 

방식으로 보이지만, 수학에서 정의하는 내적으로 보면 

동일한 방식이며, 차이는 내적을 정의하는 방식에 있다고 

볼 수 있다. 본 논문은 이 두 방식을 내적 관점에서 
해석하는 방안에 대해 논의한다.  

 

Ⅱ. 본론  

통신 시스템은 송신신호 x 가 채널 H 와 곱해져서, 

잡음 n 이 더해진 신호로 모델링한다.  
𝑦 = 𝐻𝑥 + 𝑛 

신호 추정에서 최적의 추정값을 정의하기 위해서는 

먼저 특정한 기준 또는 비용 함수가 필요하다. ZF 과 

MMSE 는 서로 다른 비용함수를 최적화하는 방식이다. 

먼저, ZF 는 신호와 추정값 사이의 오차를 최소화하는 
것이 목표이다.  

𝑥'(𝑦) = argmin
!
‖𝑦 − 𝐻𝑥‖" 

MMSE 는 신호와 추정값 사이의 오차의 평균 제곱을 
최소화하는 것이 목표이다. 

𝑥'(𝑦) = argmin
!
𝐸 ‖𝑦 − 𝐻𝑥‖" 

즉, ZF 과 MMSE 추정 방식 모두 오차를 최소화하고자 

한다는 점에서 공통점을 가지고 있다. 이 최적화 문제의 

해는 다양한 방식으로 도출할 수 있지만, 직관적으로 

가장 쉬운 방식은 기하학 모델을 이용하는 것이다. 

기하학 모델에서 오차, 즉, 두 벡터가 거리를 최소화하는 
방식은 벡터 공간에서 정사영하여 구하는 것이다. 즉, 

오차 벡터는 채널의 column space 와 직교하게 된다. 

벡터 공간은 다음과 같이 벡터 덧셈과 스칼라 곱셈 

연상에 대해 닫혀 있는 벡터들의 집합으로 구성된다. 
• 벡터 덧셈: 𝑣#, 𝑣" ∈ 𝒱이면, 𝑣# + 𝑣" ∈ 𝒱 

• 스칼라 곱셈: 𝑎 ∈ 𝑅이고, 𝑣 ∈ 𝒱이면, 𝑎𝑣 ∈ 𝒱 

벡터 사이의 각도를 정의하고 두 벡터가 직교하는 

것을 일번적으로 정의하기 위해서는 내적이 필요하며, 

다음 조건을 만족하는 연산으로 정의된다.  
• 교환성: 𝑢	 ⋅ 𝑣	 = 	𝑣	 ⋅ 𝑢	 
• 선형성: (𝑎𝑢 + 𝑣) ⋅ 𝑤 = 𝑎(𝑢 ⋅ 𝑤) + 𝑢 ⋅ 𝑤 

• 비음수성: 𝑢	 ⋅ 𝑣	 ≥ 0이고, 𝑢	 ⋅ 𝑢	 = 	0 iff 𝑢 = 0 
내적을 가진 벡터 공간을 내적 공간이라고 한다. 이 내적 
공간에서 다음과 같은 것이 정의된다. 

• 벡터 𝑢의 노름: ‖𝑢	‖ = √𝑢 ⋅ 𝑢 

• 벡터 u 와 벡터 𝑣 간 각도: θ = 	𝑎𝑟𝑐𝑐𝑜𝑠	(𝑢	 ⋅ 𝑣	/	‖𝑢‖ ×
‖𝑣‖) 

• 벡터 𝑢와 벡터 𝑣가 직교: 𝑢	 ⋅ 𝑣	 = 	0 
ZF 추정은 수신 신호벡터 y 를 채널의 행공간에 

정사영하는 방식으로 볼 수 있다.  

 
그림 1. ZF 추정에서 정사영을 통한 추정 방식 

 

이 경우 두 신호 벡터간 내적은 유클리드 공간에서 

사용하는 일반적인 정의, 즉, 𝐮 ⋅ 𝐯 = 𝐮𝐓𝐯 로 정의된다. 
따라서, ZF 추정은 오차 벡터인 𝐲 − 𝐇𝐱' 가 채널의 

!

"#$



행공간과 직교한다는 특성, 즉, 𝐇𝐓(y − Hx') = 0 을 

활용하여 다음과 같이 구할 수 있다 [1]. 
𝒙Q(𝒚) = (𝐻%𝐻)&#𝐻%𝑦 

평균이 0 인 랜덤 변수 (𝑋 − 𝐸(𝑋))와 ( 𝑌 − 𝐸(𝑌))도 

평균이 0 인 두 랜덤 변수간 덧셈도 평균이 0 인 랜덤 

변수가 되고, 스칼라를 곱해도 평균이 0 인 랜덤 

변수이기 때문에, 즉, 벡터 덧셈과 스칼라 곱셈에 대해 
닫혀 있기 때문에 벡터 공간에 있는 벡터로 볼 수 있다. 

벡터 공간에 존재하는 두 랜덤 변수 간 내적을 정의하면 

랜덤 변수를 내적 공간에 존재하는 벡터와 동일하게 

해석할 수 있다.  

 
그림 2. 내적 공간에서 본 랜덤 변수  

 

내적 공간에서 랜덤 변수 간 내적 등은 다음과 같이 

정의된다. 

• 내적: Σ'( = Cov(𝑋, 𝑌) = E YZ𝑋 − E(𝑋)[Z𝑌 − E(𝑌)[
)
\ 

• Z𝑋 − 𝐸(𝑋)[ 의 노름: σ' = ^Cor(𝑋, 𝑋) = ^Var(𝑋) =

`EYZ𝑋 − E(𝑋)[Z𝑋 − E(𝑋)[
)
\ 

• cos 𝜃: ρ',( =
Σ!,#

+!+#
 

기하학에서 본 추정 문제는 다음과 같은 그림을 통해 

해석할 수 있다.  

 
 그림 3. 기하학으로 본 추정 문제  

 

선형 추정 문제, e𝑋f − E(𝑋)g = 𝑎Z𝑌 − E(𝑌)[ 는 h𝑋 −
𝑋fh 를 최소화하는 벡터를 구하는 문제로 볼 수 있고, 

직교성 원리를 적용하여 E Ye𝑋 − 𝑋f(𝑌)g Z𝑌 − E(𝑌)[
)
\ = 0를 

만족하는 𝑋f(𝑌)를 구하는 문제로 해석할 수 있다. 또한, 

최소 평균 제곱 오차는 σ'" sin" θ = σ'" (1 − cos" θ) =
σ'"Z1 − ρ',(" [이 된다.  

MMSE 선형 추정기는 다음과 같다. 

𝑋f(𝑌) = 𝑎𝑌 + 𝑏 
직교성 원리를 적용하여 𝑎는 다음과 같이 구할 수 있다.  

E "#𝑋 − 𝑋&(𝑌)* +𝑌 − E(𝑌),!- = E/(𝑋 − 𝑎𝑌 − 𝑏)+𝑌 − E(𝑌),2 = 0 
E[𝑋𝑌 − 𝑋E(𝑌) − 𝑎𝑌" + 𝑎𝑌E(𝑌) − 𝑏𝑌 + 𝑏E(𝑌)] = 0 
E(𝑋𝑌) − E(𝑋)E(𝑌) − 𝑎E(𝑌") + 𝑎ZE(𝑌)[

" = 0 

𝑎 =
Cov(𝑋𝑌)
Var(𝑌) =

Σ'(

Σ(

 

b 는 MMSE 추정기의 비편향 특성을 이용하여 다음과 
같이 구할 수 있다. 

EZ𝑋f[ = E(𝑋) = E(𝑎𝑌 + 𝑏) 
𝑏 = E(𝑋) − 𝑎E(𝑌) 

평균이 0 인 렌덤 벡터에서도 직교성 원리가 동일하게 

적용된다. 즉, 선형 MMSE 추정기 𝑋f = 𝐴%𝑌 는 다음과 

같이 직교성 원리를 이용하여 구할 수 있다.  

E YZ𝑋 − 𝑋f[Z𝑌 − E(𝑌)[
%
\ = EnZ𝑋 − 𝑋f[𝑌%o = 0 

EZ𝑋𝑌% − 𝑋𝑌%p[= EZ𝑋𝑌% − 𝐴%(($[ = 0 
Σ'( = 𝐴%Σ( 

𝑋f = 𝐴%𝒀 = Σ('

%
Σ(

&#(
= Σ'(Σ(

&#(
 

 

일반적인 채널 모델인 𝑦 = 𝐻𝑥 + 𝑛와 공분산이 Σ!! =
𝜎!"𝐼,Σ,, = 𝜎,"𝐼 이라고 가정하면, MMSE 추정은 다음과 

같다.  

𝐀𝐓 = u𝐻)𝐻 +
𝜎,"

𝜎!"
𝐼v

&#

𝐻) 

MMSE 추정기는 다음과 같이 구한다. 

𝑋f(𝑌) = E(𝑋|𝑌) 
가우시안 랜덤 변수가 아닌 경우, 이러한 방식으로 

MMSE 추정값을 구하기는 매우 어렵다. 예를 들어, X 와 
Z 가 라플라스 분포를 따르는 다음과 같은 덧셈 라플라스 

채널을 가정하자. 
𝑌 = 𝑋 + 𝑍 

MMSE 추정을 위해, E(𝑋|𝑌) 를 활용하기 위해서는 

조건부 확률분포 함수를 구해야 한다.  

 
가우시안 분포 아닌 경우, 이러한 조건부 확률분포 
함수를 구하는 것은 어렵다. 따라서, 선형 추정을 

가정하고 직교 원칙을 이용하여 선형 MMSE 추정기를 

구하는 방식이 일반적이다.  

ZF 추정과 MMSE 추정은 다른 목적함수를 가진 다른 
추정 방식으로 보인다. 하지만, 두 방식 모두 내적 

공간의 벡터를 이용하여 해석하면, 직교하는 벡터를 

구한다는 공통점을 가진다. 이러한 점을 이용하면, 신호 

추정 방식을 단일한 수학 틀 안에서 이해할 수 있게 

된다.  
 

Ⅲ. 결론  

무선 통신 시스템에서 신호 추정은 신호 복원 뿐 

아니라, 채널 추정 등 다양한 분야에 적용되는 필수 
기술로 일반적으로 ZF 방식과 MMSE 방식을 이용한다. 

이 두 방식은 서로 다른 목적함수를 최적화는 방식으로 

공통점이 없는 것 처럼 보인다. 하지만, 내적 공간에서 

직교성 원리를 활용한다는 관점으로 문제를 해석한다면, 

단일한 수학 틀로 해석할 수 있다. 본 논문을 이러한 
해석 방식을 제공하였다.  
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