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요 약
UAV를 활용한공중기지국은배터리제약으로인해장기간의안정적인 통신서비스제공에어려움이 있다. 이를 해결하기 위해지상기지국과테더

로 연결되어 지속적으로 전력을 공급받는 tethered UAV(TUAV)가 제안되었으나, 한정된 테더 길이로 인해 전체적인 이동 범위가 제한되는 문제점을
가지고 있다. 본 논문에서는 공중 기지국을 이동차량에탑재한 Movable-GS-Mounted TUBS(TUAV base station) 시스템을 고려하여, 네트워크전체
전송률을 최대화하고 아웃티지 사용자 수를 최소화하기 위한 계층적 분산 다중 에이전트 심층 강화학습 기법을 제안하고 그 성능을 비교 분석한다.

Ⅰ. 서 론

UAV를 활용한공중기지국은높은이동성을가지며, 지상 기지국 대

비 우수한 가시선(Line-of-Sight, LoS) 환경을 제공할 수 있다 [1]. 그러

나 배터리 제약으로 인해 장시간 안정적인 통신 서비스 제공에는 한계가

있다. 이를 극복하기 위해 지상 기지국과 테더로 연결되어 지속적으로 전

력을 공급받는 tethered UAV(TUAV)가 제안되었다 [2]. 하지만 한정된

테더 길이에 따른 이동 범위 제약으로 인해, 반구형 서비스 영역

(Hovering region) 내에서 TUAV 기반 공중기지국(TUAV base station,

TUBS)의 3차원 위치최적화가필요하다 [3]. 한편, 위치가고정되어있는

기존 지상 기지국의 경우에도 고정된 위치로 인해 네트워크 커버리지 유

연성과확장성에그한계를가지고있다. 본 논문에서는이러한한계를극

복하기 위해 공중 기지국을 이동 차량에 탑재한

Movable-GS-mounted-TUBS 시스템을 고려하고, 지상 이동성을 활용

함으로써서비스범위확장과커버리지유연성향상을목표로한다. 더 나

아가, 복잡하고동적인통신환경에서의자원할당과위치제어문제를동

시에 최적화하기 위해 TUBS와 Movable GS를 각각 독립적인 에이전트

로 정의한 계층적 다중 에이전트 심층 강화학습 기법을 제안한다.

Ⅱ. 시스템 및 채널 모델

A. 시스템모델

본 논문에서는 그림 1과 같이 Movable GS와 TUBS가 테더로 연결된

네트워크를 고려한다. Movable GS 집합은  ⋯,

TUBS 집합은   ⋯로정의한다. 전체 사용자수는 로

나타내며, 는 번째 TUBS에 연결되어서비스를제공받는사용자수를

의미한다. 전체 사용자 수는 
  



로표현된다. TUBS는 테더로 연

결된 Movable GS를 기준으로 정의된 반구형 서비스 영역 내에서 3차원

이동이 가능하다. Movable GS는 지상 평면에서 이동하며, 이에 따라

TUBS의 서비스 영역 또한 동적으로 변화한다. 사용자 이동성을 고려하

기 위해 사용자의 이동을 Random Walk 모델로 모델링한다 [4]. 사용자

의 위치는 매 time step마다 무작위로 선택된 이동각 ∈ 과

이동속도 ∈ max 에 따라 갱신된다.

그림 1. Movable-GS-mounted-TUBS를 고려한 계층적 분산 심층 강화학습 프레임워크

B. 채널모델

TUBS와 사용자 간의 Air-to-Ground(A2G) 채널은 ITU-R에서 제안

한 도심 환경 기반 확률적 채널 모델을 따른다 [5]. TUBS 와 사용자 

간의 LoS 확률과 non-LoS(NLoS) 확률은 아래와 같이 계산한다.


tan





  (1)




 (2)

여기서 와 는 ITU-R에서 제시하는 도심별 환경 파라미터이다.

TUBS 의 전송전력을 
, TUBS 와사용자 간의 평균경로손

실을 라 하면 수신 신호 전력은 아래와 같이 계산한다.




 (3)

사용자는 가장 높은 수신 전력을 제공하는 하나의 TUBS와 연결되며, 신

호 대 잡음비(signal-to-interference-plus-noise ratio, SINR)는 아래와

같이 계산한다.

 


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
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


(4)

여기서 은 Additive White Gaussian Noise(AWGN)의 분산을 의미한

다. SINR이 임계값() 미만인 사용자는 아웃티지 사용자로 간주한다. (4)

로부터, 평균 데이터 전송률은 아래와 같이 계산한다.
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(5)

여기서 는 번째 TUBS에 할당된 총 대역폭을 의미한다.



Ⅲ. 계층적 분산 심층 강화학습 프레임워크

Outer-loop reinforcement Learning(RL)에서는 일정 주기마다

movable GS의 위치를 제어하고, inner-loop RL에서는 매 time step마다

TUBS의 자원 할당 및 3차원 위치를 제어한다. 이러한 계층적 설계는 전

체 행동 공간을 축소함으로써 계산 복잡도를 줄이고, 안정적인 학습을 가

능하게 한다. 본 최적화 문제는 Markov decision process(MDP)로 모델

링된다.

A. Outer-loop RL

Outer-loop RL에서의 에이전트는 movable GS로, 상태는 번째

movable GS의 데카르트 좌표계에서의 위치로 표현된다. 행동은 지상 평

면 상에서의 위치 제어로 다음과 같이 정의된다.


    (6)


∈±∆±∆∆  (7)

B. Inner-loop RL

Inner-loop RL에서의 에이전트는 TUBS로, 상태는 연결된 movable

GS를 기준으로 한 번째 TUBS의 구면좌표계상에서의 위치와 전송전

력으로구성된다. 행동은위치제어 
 과 전송전력제어 

로

구성되며, 전체 행동 공간은 
×

로정의된다. 여기서집합 


과 
는 ±∆±∆±∆∆ , ±∆∆ 

로 정의된다.
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C. Shared Reward

모든 에이전트는 공통의 목표를 가진다. 에이전트 간의 협력적 학습을

유도하기 위해 공유 보상을 사용하고 시간 에서의 공유 보상은 아래와

같이 정의된다.

  
  








× 


 

(10)

이때, 는시간 에서의서비스불가사용자 수를나타낸다. 안정적

인 학습을 위해 보상 값은 가능한 최대값으로 나누어 [0,1]로 정규화된다.

Ⅳ. 시뮬레이션 결과 및 결론

본 논문에서는 suburban 환경 6-에이전트시나리오에서 시뮬레이션을

진행하였다. 시뮬레이션 파라미터는 표 1에 요약되어있다.

표 1. 시뮬레이션 파라미터

비교 방안으로는 Random Action(RA), Multi-Agent Distributed

DQN considering only TUBSs(MADDQN-OT), Multi-Agent

Distributed DQN considering only Movable-GSs(MADDQN-OG),

Fixed Position Control(FPC), Fixed Transmission Power

Allocation(FTA), Distributed Q-Learning(D-QL)을 고려한다.

그림 2. 공유 보상과 개별 보상 성능 결과

그림 3. 6-에이전트 환경에서의 학습 성능 결과

그림 2는 공유 보상(Shared Reward, SR)과 개별 보상(Individual

Reward, IR)의 학습 성능을 비교한 결과로, 공유 보상이 더 빠른 수렴 속

도와 높은 성능을 달성함을 확인할 수 있다. 이는 에이전트 간 협력적 학

습이 네트워크 전체 성능 향상에 기여함을 의미한다. 그림 3은 제안 기법

과비교방안들의학습성능을비교한결과를나타낸다. 제안 기법은학습

초기부터 빠르게 성능이 향상되며, 전 학습 구간에 걸쳐 안정적인 수렴성

을보인다. 이는 계층적구조를통해행동공간이축소된 결과로 볼 수있

다. FTA 기법은 학습 초기에는 비교적 높은 보상을 달성하지만, 자원 할

당을 고려하지 않는 한계로 인해 약 150 에피소드 이후부터는 제안 기법

대비 성능이 저하된다. FPC 기법은전력 제어만을고려한방식으로, 위치

제어가 핵심적인 요소임을 보여준다. 또한, MADDQN-OT와

MADDQN-OG 기법의 비교 결과를 통해, Movable GS의 도입이 네트워

크 커버리지 확장 및 전체 성능 향상에 유의미하게 기여함을 확인 할 수

있다. 한편, D-QL기법은 테이블 기반 학습의 한계로 보상 변동성이 크고

전반적으로 낮은 성능을 보이며, 복잡한 다중 에이전트 환경에서 적용하

기에는 한계가있음을보여준다. 본 논문은Movable GS와 TUBS를 결합

한 네트워크 설계에 대한 새로운 가능성을 제시하며, 향후 테더의 무게에

따른 비행 제약을 고려한 현실적인 운용 환경으로 확장할 예정이다.
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Parameter Value
Bandwidth  200 [KHz]

Noise Power   -120 [dBm]

Minimum/Maximum transmit power min
  max

  27, 33 [dBm]

Maximum movement speed max  1 [m/s]
TUBS’s Learning rate   0.00005
TUBS’s Discount factor   0.95
Movable GS’s Learning rate   0.0003
Movable GS’s Discount factor   0.7


