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요 약  

 
위성 광통신은 레이저 기반의 빔을 이용해 RF (Radio Frequency) 대비 매우 높은 데이터율을 제공할 

수 있지만, 대기 난류·구름·안개 등 기상 요인과 지향·추적 오차, 가시 시간 제약으로 인해 링크 품질과 

가용성이 크게 변동한다. 본 논문은 위성 광통신 기반 시스템에서 처리량을 제한하는 요소를 정리하고, 

기상·채널 예측 기반 자원 할당, 학습 기반 (ML) 제어 등 처리량 최적화 연구 동향을 조사한다. 

 

Ⅰ. 서 론  

저궤도 (Low Earth Orbit, LEO) 위성 기반 지구관측 

및 통신 서비스 등의 고도화로 인해, 위성– 지상 간 다운

링크에서 요구되는 데이터 전송률은 지속적으로 증가하

고 있다. 전통적인 RF (Radio Frequency) 통신은 주파수 

자원과 안테나 크기, 규제 측면에서 확장에 한계를 보이

며, 이를 보완하기 위한 대안으로 위성 광통신 (Free-

Space Optical, FSO)이 활발히 연구되고 있다. FSO 는 

넓은 대역폭, 높은 지향성, 낮은 간섭 특성을 바탕으로 

매우 높은 이론적 전송률을 제공한다 [1]. 또한 FSO 전

반에 대한 통신이론 관점의 동향 정리와 우주 FSO 시스

템 관점의 정리 역시 조사되어 왔다 [2], [3]. 

그러나 위성 FSO 의 실제 처리량은 이상적인 채널 용

량과 큰 괴리를 보인다. 지구 대기를 통과하는 링크에서

는 대기 난류에 의한 강도 변동, 포인팅 및 추적 오차에 

따른 정렬 손실, 배경광 및 샷잡음이 중첩되며, 이로 인

해 수신 신호는 강한 확률적 변동성을 갖는다 [1], [2]. 

이러한 환경에서는 평균 SNR (Signal to Noise Ratio) 기

반 설계가 유효하지 않으며, 링크 성능은 임계 수신 품질 

미만으로 떨어지는 단절 구간의 발생 빈도와 지속 특성

에 의해 지배된다. 

본 논문은 위성 FSO 시스템에서 링크 물리 계층의 처

리량을 제한하는 근본 요인을 채널 관점에서 정리하고, 

이를 극복하기 위한 물리 계층 최적화 기법의 연구 동향

을 조사한다. 특히 IM/DD (Intensity Modulation/Direct 

Detection) 구조, 빔 폭·포인팅 지터·수신 구경 

(Aperture)의 결합 최적화, 구경 평균화 및 공간 다이버

시티 등 FSO 물리 계층 기법을 조사하며, 단절이 빈번한 

환경에서 목표 함수를 비트 오류에서 의미 보존으로 확

장하는 시맨틱 통신 기반 FSO 물리 계층 접근을 포함하

여 최근 흐름을 조사한다. 

 

Ⅱ. 본론  

1. 위성 FSO 링크의 물리 계층 채널 특성 

대기 난류는 굴절률 변동을 통해 수신 광전력의 확률

적 변동을 유발하며, 약·중 난류 환경에서 로그정규, 보

다 일반적으로는 감마– 감마 분포 기반 모델이 널리 사

용된다 [4], [5]. 난류로 인한 변동은 단순한 평균 감쇠

가 아니라 순간적으로 강한 페이딩을 유발하며, 이 구간

에서 오류율이 급증한다. 

포인팅/추적 오차는 빔이 수신 구경에서 벗어나거나 부

분적으로만 수신되는 정렬 실패를 의미하며, 위성 제어 

오차, 미세진동, 추적 오차 등 다양한 원인에 의해 발생

한다 [1]. 포인팅 손실이 난류와 결합되면 임계 품질 미

만 구간 (단절) 발생 확률이 증가한다. 특히 포인팅 오차

가 포함된 FSO 링크의 단절 제약 하에서 전송률의 최적

화 문제는 대표적으로 다루어져 왔다 [6]. 

2. 전통적 물리 계층 최적화 기법 

위성 FSO 링크의 물리 계층 최적화는 RF 와 달리 

IM/DD, 대기 난류, 포인팅/정렬 손실, 배경광·샷잡음이 

동시에 성능을 지배한다 [1], [2]. 따라서 최적화의 중심

은 일반적인 링크 적응 자체가 아니라, 난류– 포인팅 결

합 채널에서 단절 지배 성능을 낮추는 FSO 고유 설계 

변수에 맞춰진다. 

변조는 IM/DD 에 적합한 OOK (On Off Keying)/PPM 

(Pulse Position Modulation) 계열이 주류이며, PPM 은 

평균 전력 제약 하에서 높은 전력 효율을 제공해 난류 

및 배경광 환경에서 유리하다 [2]. 이때 핵심은 단순 

BER (Bit Error Rate) 최소화가 아니라, 단절 제약 하에

서 유효 처리량을 최대화하도록 변조 차수 및 심볼 구조

를 선택하는 것이다. 

위성 FSO 에서 대표적 설계는 빔 폭·포인팅 지터·수신 

구경의 결합 최적화이다. 좁은 빔은 높은 이득으로 평균 

수신 전력을 높이지만 지터에 취약해 단절을 증가시킬 

수 있고, 넓은 빔은 정렬 강건성을 제공하는 대신 기하 



손실을 증가시킨다. 따라서 포인팅 오차 통계가 주어질 

때 단절 확률 (단절 제약 하에서 전송률) 관점에서 최적 

빔 폭이 존재하며, 이는 포인팅 오차를 포함한 FSO 링크 

성능 최적화의 핵심 결과로 알려져 있다 [6]. 

난류로 인한 수신 강도 변동을 완화하기 위해 수신 구

경을 키우는 구경 평균화와 다중 수신 구경을 이용한 공

간 다이버시티가 널리 활용된다. 구경을 확대하면 난류에 

의해 발생하는 강도 변동이 수신 구경에서 평균화되어 

변동 폭 (분산)이 감소하고, 다중 구경 결합은 독립적인 

수신 신호를 결합함으로써 강한 페이딩이 나타날 확률을 

낮춰 단절 발생을 줄이는 데 기여한다 [4], [5]. 결과적

으로 위성 FSO 물리 계층 최적화는 평균 성능을 최대화

하기보다, 단절을 유발하는 낮은 수신 품질 구간의 빈도

를 줄이도록 빔·구경·변조 구조를 결합 설계하는 데 초점

을 둔다. 

3. 시맨틱 통신 기반 FSO 물리 계층 

위성 FSO 는 링크 단절/급감쇠가 잦아 비트 오류 최소

화만으로는 실제 임무 성능을 보장하기 어렵다. 이에 따

라 최근 시맨틱 통신 [7]은 목표 함수를 데이터율/비트 

중심 지표에서 의미 보존 (복원 품질)으로 전환함으로써, 

불안정한 광 채널에서 유용한 정보를 최대화하는 최적화 

축으로 제안된다. 

[8]의 저자는 위성 원격탐사 영상 전송을 대상으로 

FSO 채널을 고려한 시맨틱 통신 프레임워크를 제시하고, 

딥러닝 기반 의미 인코더/디코더를 통해 전송 자원을 픽

셀 비트가 아니라 의미 특징에 집중해 복원 품질을 최적

화하였다. 이 접근은 난류·포인팅 손실로 인해 프레임 오

류/재전송이 증가하는 상황에서, 동일한 물리 자원 조건

에서도 의미 품질 기준 유효 처리량을 개선할 수 있음을 

보여준다. 

무선 비디오 캐싱·스트리밍 분야에서도 재생 지연 제약 

하에서 비디오를 다중 품질 레벨로 모델링하고, 사용자가 

체감하는 품질 (Peak SNR, PSNR) 지표를 목적함수로 두

는 최적화가 제안되어 왔다 [9]. 따라서 위성 FSO 에서

도 의미/복원 품질 기반 목적함수 설계가 유의미한 확장 

축이 된다. 

 

Ⅲ. 결론  

본 논문은 위성 FSO 링크에서 물리 계층 처리량을 제

한하는 핵심 요인을 난류·포인팅 손실·배경광 잡음에 따

른 단절 특성으로 정리하고, 이를 완화하기 위한 물리 계

층 최적화 기법의 연구 동향을 조사하였다. 전통적 접근

은 IM/DD 에서 변조 구조 선택, 빔 폭– 포인팅 지터– 수

신 구경의 결합 최적화, 구경 평균화 및 공간 다이버시티

를 통해 단절 확률을 낮추고 유효 처리량을 개선하는 데 

초점을 둔다. 

또한 시맨틱 통신은 단절이 빈번한 환경에서 목표 함

수를 비트 정확도에서 의미 보존으로 확장함으로써, 제한

된 광 자원 조건에서도 임무 성능을 유지·향상할 수 있는 

새로운 물리 계층 최적화 방향을 제시한다. 향후에는 단

절 통계와 의미 품질 지표 간 정량적 관계 모델링, 채널 

불확실성 및 환경 변화 (계절·지역) 하에서 시맨틱 인코

더 강건성, 위성 탑재체 제약 (연산·전력·지연)을 고려한 

경량 구현이 핵심 과제일 것으로 보인다. 

더 나아가 비지상 네트워크 (Non-Terrestrial 

Network, NTN)에서의 자원 조정·스케줄링 문제는 다중 

에이전트 학습 기반으로도 활발히 연구되고 있다 [10]. 
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