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요 약  

 
통신 시스템이 고도화됨에 따라, 무선 접속망 (RAN)의 에너지 소비는 운용 비용과 환경적 영향 측면에서 

주요한 기여 요소로 부상하고 있다. 본 논문은 가상화 가상 무선 접속망 (vRAN) 환경에서 에너지 효율을 극대화하기 

위한 딥러닝 기반 실시간 제어 방법을 연구한다. 구체적으로, 동적으로 변화하는 네트워크 트래픽 및 채널 조건에 
적응하면서 전력 증폭기 (PA)와 같은 핵심 구성 요소의 전력 소비를 최적화하는 강화학습 (RL) 모델을 제안한다. 

 

Ⅰ. 서 론  

차세대 이동통신 기술은 데이터 전송률과 네트워크 
용량을 크게 향상시켰지만, 동시에 RAN 의 에너지 소비 

급증이라는 과제를 초래했다. 특히 이동통신 전력 소비의 

70% 이상이 RAN(그중 PA)에 집중된다는 점에서 [1], 

적정 수준의 사용자 경험 (QoS) 을 유지하면서 에너지 

효율을 높이는 것은 운용 비용과 탄소 배출 저감을 위해 
중요하다. 기존 절감 기법은 조건부 비활성화 같은 정적 

방식에 의존해 트래픽·채널 변화에 대한 적응성이 

제한적이었다 [2]. 

vRAN 은 기지국 기능을 중앙 서버 소프트웨어로 

구현해 유연한 자원 관리를 가능하게 하며 [3], [4], 본 

연구는 이를 기반으로 심층 강화학습 (DRL)을 이용해 

PA 동작을 실시간 제어하여 불필요한 PA 활성화를 
줄이는 방법을 제안한다. 또한 제안 기법을 현실적인 

환경에서 평가하기 위해 OAI 와 NI 하드웨어 기반의 

실시간 vRAN 테스트베드를 구현하고 검증 결과를 

제시한다. 

Ⅱ. 본론 

2.1 시스템 아키텍쳐 

제안하는 RL 모델의 학습·검증을 위해, 그림 1 과 같이 
실제 통신 환경을 모사하는 vRAN 테스트베드를 

구성하였다. Linux 에서 OAI 기반 gNodeB (gNB) 와 

User Equipment (UE)가 5G 프로토콜 스택을 구동하며, 

gNB 서버는 vRAN 처리 연산을 수행한다. NI USRP 
X410 이 RF 송수신을 담당하고, CompactRIO (cRIO)가 

PA 전력 소비를 고해상도로 측정한다. Skyworks 고속 

스위칭 PA 는 gNB 신호를 증폭하며, OAI PHY 계층의 

슬롯 단위 전송 정보를 기반으로 USRP General-

Purpose I/O (GPIO)를 구동해 PA 를 슬롯 단위로 

제어한다. 또한 Test Orchestration Entity가 cRIO 전력 

데이터와 OAI QoS 지표(throughput, latency, BLER)를 

시간 동기화하여 RL 의 state 및 reward 입력으로 
제공한다.  

2.2 제안 방식: 강화학습 기반 PA 에너지 절감 

본 절에서는 슬롯 단위 PA ON/OFF 제어를 강화학습 

문제로 정식화하고, 실시간 운용에 적합한 state, action, 
reward 설계를 제시한다. 목표는 평균 전력 소비를 

최소화하면서도 지연 및 오류율과 같은 QoS 열화를 

억제하는 정책을 학습하는 것이다.  

큐에 패킷이 있을 경우에 PA 를 항상 활성화하는 

방식은 저부하 구간에서 에너지 낭비를 유발하며, 반대로 
과도한 비활성화는 지연 증가 및 deadline violation 을 

초래할 수 있다. 이에 본 연구에서는 PA 제어를 에너지 

절감과 지연 성능 간 trade-off를 고려한 순차적 

의사결정 문제로 모델링하고, 이를 강화학습으로 
해결한다. 

 
에이전트는 MAC/PHY에서 추출한 state(큐 길이, 

슬롯당 전송 가능량, HOL 지연, deadline 잔여 시간 

등)를 입력으로 받아 각 슬롯에서 PA 를 ON/OFF하는 

이진 행동을 결정한다.  



 

 
보상은 전력 소비에 대한 페널티와 지연 증가·deadline 

violation 에 대한 페널티로 구성되어, 지연 여유가 있을 

때는 OFF를, 위험이 커질수록 ON 을 선택하도록 

유도한다. 정책 경사 기반 알고리즘으로 학습된 정책을 

실시간 추론에 적용해, 실제 5G NR 전송 환경에서 동작 
가능한 RL 기반 PA 절감 프레임워크를 구성한다. 

2.3 실험 결과 

그림 2 는 제안한 RL 

기반 PA 제어를 

테스트베드에 적용했을 
때의 지연 특성과 전력 

변화를 함께 보여준다. 

관측 구간 기준으로, 

기준 스케줄러(큐에 
패킷이 있을 경우 PA 를 

무조건 키는 동작)에서는 

패킷 지연의 

평균/중앙값이 각각 

0.57/0.41 ms 로 매우 
낮게 유지되었다.  

반면 RL 제어를 

적용하면 평균/중앙값 

지연이 2.98/2.77 ms 로 

증가하여, PA 비활성화에 
따른 지연 trade-off가 

관측된다. 그럼에도 지연 

분포는 수 ms 수준에 

머물러 극단적인 tail 
증가는 제한적임을 

확인하였다.  

전력 측면에서는 RL 

정책이 전송 슬롯을 

선별적으로 선택하면서 PA 활성 구간을 줄였고, PA 
전력이 약 0.25 W 수준에서 약 0.14 W 수준으로 

감소하는 단계적 변화가 나타났다. 이는 동일 실험 

조건에서 약 40%대(대략 44%) 전력 절감에 해당하며, 
RL 이 QoS 저하를 과도하게 유발하지 않는 범위에서 

불필요한 PA 활성화를 억제할 수 있음을 시사한다. 

Ⅲ. 결론  

본 논문에서는 가상화된 RAN(vRAN) 환경에서의 전력 

절감 문제를 RL 을 통해 연구하고, OpenAirInterface 와 
FPGA 기반 USRP 를 통합한 실시간 테스트베드에서 

실현하였다.  

제안한 테스트베드는 MAC 계층 자원 할당이 PA 전력 

소비에 미치는 영향을 슬롯 단위로 측정할 수 있도록 
설계되었으며, 이를 통해 강화학습 기반 제어가 실제 

환경에서도 PA 동작을 효과적으로 최적화할 수 있음을 

확인하였다. 향후 연구에서는 구축된 테스트베드 상에서 

폐루프 DRL 에이전트 학습 프레임워크를 구현할 

예정이다. 
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그림 2 좌측은 기준 스케줄러에서의 패킷 
지연 분포, 중앙은 RL 기반 PA 제어 적용 
시의 지연 분포, 우측은 시간에 따른 PA 
전력 추이를 나타냄. 

그림 1. 강화학습 기반 PA 제어 및 폐루프 학습 구조의 개념도. RL 에이전트는 에너지 효율 향상을 위해 최적의 전송 슬롯을 선택하며, 해당 정책은 OAI 기반 vRAN 
테스트베드에서 실행된다. cRIO는 실시간 PA 전력 소비를 측정하여 폐루프 학습을 가능하게 한다. 좌측 상단의 사진은 실제 하드웨어 구현 모습을 보여준다. 
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