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Abstract  

Radar-based human activity recognition (HAR) increasingly leverages multiple signal representations 

such as range-Doppler spectrograms, range-angle heatmaps, and point clouds. However, fusing these heterogeneous 

modalities remains challenging due to representation-specific feature distributions. We propose FiLM-FusionNet, a 

multimodal deep learning architecture that employs Feature-wise Linear Modulation (FiLM) to adapt intermediate 

features according to representation context, enabling robust and efficient fusion. Experimental results demonstrate 

that FiLM conditioning significantly improves classification accuracy compared to single-modality baselines and 

conventional fusion strategies. Ablation studies confirm that FiLM and multimodal integration provide complementary 

gains, supporting accurate radar-based HAR for real-world applications. 

 

Ⅰ. Introduction  

Human activity recognition (HAR) using radio 

frequency (RF) and millimeter-wave (mmWave) radar 

has gained significant momentum due to its privacy-

preserving nature, robustness to lighting or occlusion, 

and suitability for smart environment applications. 

Device-free sensing surveys emphasize that deep 

learning and transfer learning have become central to 

RF-based HAR, especially in addressing challenges 

such as domain shift, multimodal variability, and 

generalization across environments [1]. Similarly, 

recent AIoT-focused reviews highlight the need for 

scalable, edge-deployable architectures capable of 

handling practical sensing constraints in real-world 

IoT systems [2]. 

In radar based HAR specifically, earlier 

benchmarking and community-driven challenges 

played an important role in establishing evaluation 

standards. The Human Activity Radar Challenge 

introduced a unified assessment framework using the 

Glasgow “Radar Signatures of Human Activities” 

dataset, demonstrating the progress and limitations of 

existing algorithms, especially under varied activity 

types and subject conditions [3], [4]. Parallel efforts 

have expanded multimodal sensing datasets. For 

example, OPERAnet integrates RF and vision-based 

sources to encourage cross-sensor and 

cross-representation research in human activity 

monitoring [5]. The Open Radar Initiative further 

addressed fragmentation in radar datasets by 

promoting standardized acquisition procedures and a 

publicly accessible micro-Doppler benchmark [6]. 

Deep learning models designed for radar HAR 

continue to evolve toward more compact, accurate, 

and robust architectures. Tan et al. proposed a 

two-stream CNN– BiGRU model that leveraged 

magnitude and phase features for micro-Doppler 

classification, demonstrating the importance of 

combining spatial and temporal cues [7]. Ayaz et al. 
performed a systematic comparison of CNN 

architectures including MobileNetV2, VGG-16/19, and 

ResNet-50 across STFT, SPWVD, and time-range 

representations, reporting strong performance 

efficiency trade-offs, relevant for real-time radar 

HAR [8]. More recently, Wu et al. introduced 

RadMamba, a radar-adapted Mamba State-Space 

architecture achieving competitive accuracy with 

drastically reduced parameters, demonstrating the 

feasibility of efficient on-device radar HAR [9]. 

Despite these advancements, cross-device 

generalization in mmWave HAR remains largely 

unsolved. Most existing datasets rely on a single radar 

type or fixed configuration, making it difficult to 

evaluate how modulation schemes, antenna geometry, 

center frequencies, and data representations influence 

performance. This limitation directly motivated the 

creation of the MM-DCDR dataset, which 

systematically captures variability across radar 

hardware and signal representations. MM-DCDR 

contains 352k frames collected from 11 subjects 

performing 8 common actions at 1 m and 2 m 

distances, using TI AWR1843 (77– 81 GHz FMCW) 

and IMAGEVK-74 (63– 67 GHz SFCW) radars. These 

sensors differ substantially in array configuration 

(AWR1843: 3 TX × 4 RX; IMAGEVK-74: 20 TX × 20 

RX), modulation format, frame rate, angular resolution, 

and sampling parameters [10]. The dataset also offers 

three complementary representations, range– Doppler 

maps, range– angle heatmaps, and point clouds, 

enabling researchers to systematically study 

representation-device interactions. 

The corresponding MM-DCDR benchmark paper 

further emphasizes that, although many HAR models 

optimize well for a single radar system, they do not 

generalize across devices or representation domains, 



 

underscoring the need for architectures that explicitly 

incorporate device-aware processing [10]. This 

naturally motivates the development of models 

equipped with mechanisms such as sensor 

conditioning, representation fusion, and 

device-invariant feature learning to tackle 

cross-radar heterogeneity. 

Contribution. In response, this work introduces 

MM-DCDR-FusionNet, a multimodal deep learning 

framework designed for HAR. The model integrates 

three parallel encoders for range-Doppler, range-

angle, and point-cloud data, combined with a 

sensor-conditioned Feature-wise Linear Modulation 

(FiLM) module that adapts features based on the radar 

source. This architecture is aligned with current 

trends in radar HAR toward multimodal fusion, 

compact representations, and device-aware 

adaptation. 

 

Ⅱ. Method 

FiLM‑FusionNet is a multimodal deep learning 

framework designed to integrate heterogeneous radar 

representations for human activity recognition (HAR). 

The central challenge addressed is the mismatch in 

feature distributions across representations such as 

range-Doppler (RD) and range-angle (RA) heatmaps, 

and radar point clouds. To mitigate this, Feature‑wise 

Linear Modulation (FiLM) is employed to adapt 

intermediate features dynamically, enabling robust 

fusion across modalities while maintaining a compact 

computational footprint. 

The architecture comprises three parallel encoders 

tailored to distinct radar representations. The RD 

encoder utilizes a convolutional backbone augmented 

with squeeze‑and‑excitation (SE) blocks [11] to 

emphasize informative micro‑Doppler bands and 

suppress less relevant activations. The RA encoder 

mirrors this design to capture spatial structure and 

angular cues characteristic of RA heatmaps. For point 

cloud input, a PointNet‑style multilayer perceptron 

[12] aggregates per‑point attributes-geometric 

coordinates, Doppler, and intensity into a fixed length 

embedding through global max pooling. Each encoder 

outputs a compact representation that preserves the 

salient information required for downstream 

classification. 

Cross‑modality alignment is facilitated by 

FiLM‑based conditioning applied to intermediate 

feature maps in the RD and RA streams. Channel‑wise 

affine transformations are generated from learnable 

embeddings that encode representation context, 

allowing features to be modulated according to the 

statistical characteristics of each modality. This 

conditioning enhances compatibility between modality 

embeddings in the shared latent space without 

reliance on device specific metadata, thereby focusing 

the adaptation on representation differences rather 

than hardware identities. 

Following conditioning, modality embeddings are 

concatenated into a unified latent vector and 

processed by a lightweight multilayer perceptron that 

balances capacity and efficiency before producing 

class logits via a softmax layer. Inputs are normalized 

to fixed dimensions to enable batched training: RD and 

RA heatmaps are resized via interpolation, and point 

clouds are padded or subsampled to a consistent 

number of points. Data augmentation is intentionally 

omitted to isolate the effects of FiLM conditioning and 

multimodal fusion on recognition performance. 

The overall design emphasizes modularity and 

compactness, enabling consistent training and 

inference across heterogeneous radar representations 

without reliance on data augmentation. To isolate the 

impact of representation‑aware conditioning and 

multimodal fusion, inputs are standardized in size, and 

training employs a cross‑entropy objective with Adam 

optimization. 

 

III. Result  

 Performance evaluation is conducted on radar 

datasets, MM‑DCDR, which includes eight activity 

classes. The overall accuracy and per‑class accuracy 

are reported to capture variability across different 

motion patterns. Comparisons include single‑modality 

baselines and the proposed FiLM‑conditioned 

multimodal model, followed by ablation studies that 

examine the impact of FiLM layers and modality fusion. 

These results provide a comprehensive view of how 

representation‑aware conditioning improves 

classification accuracy and robustness across 

heterogeneous radar representations. 

 All experiments were conducted on the 

MM-DCDR dataset comprising eight activity classes. 

The FiLM-FusionNet model and single-modality 

baselines were trained for 10 epochs using the Adam 

optimizer with a learning rate of 1×10⁻³, batch size of 

16, and input resolution of 128×128 for image-based 

representations for the heatmaps. Point cloud inputs 

were standardized to a fixed number of points, and no 

data augmentation was applied to isolate the effect of 

FiLM conditioning and multimodal fusion. The loss 

function was cross-entropy. 

From Table 1 and 2, FiLM-FusionNet achieves the 

highest accuracy across all eight classes, with most 

activities exceeding 98% and four classes reaching 

100%. The RD only variant remains competitive and 

even surpasses the full model on UpDown and 

TurnChair, underscoring the strong discriminative 

power of spectrogram features for periodic or angular 

motions. SparsePointNet [13] consistently trails the 

FiLM-based models, especially on SitDown and 

TurnChair, highlighting the limitations of 

point-cloud-only representations for fine-grained 

temporal patterns. Overall, FiLM conditioning and 

multimodal fusion deliver superior robustness and 

accuracy compared to single-modality approaches 

under standardized training conditions. 

 



 

Table 1. Overall classification performance on 

MM‑DCDR (8 classes). 

Metric FiLM-F

usionNe

t 

FiLM-Fusi

onNet (RD) 

SparsePoint 

Net [13] 

Accuracy 0.9890 0.9787 0.8918 

Macro F1 0.9885 0.9780 0.8901 

Params (M) 4.9 0.3-0.5  

 Table 2. Per-class accuracy (%) for eight activities in 

the MM-DCDR dataset 

 

IV. Conclusion 

This work introduced FiLM‑FusionNet, a multimodal 

deep learning architecture for radar-based human 

activity recognition that leverages Feature-wise 

Linear Modulation (FiLM) to adapt intermediate 

features across heterogeneous representations. 

Evaluated on the MM‑DCDR dataset, the proposed 

model achieved state-of-the-art accuracy (98.9%) 

and macro F1 (98.85%), outperforming both range–

Doppler-only and point-cloud-only baselines. Per-

class analysis confirmed the robustness of FiLM 

conditioning and multimodal fusion, particularly for 

complex activities such as chair transitions and 

squatting. The compact design and standardized 

training configuration demonstrate that 

representation-aware modulation can significantly 

enhance radar HAR performance without reliance on 

data augmentation, providing a strong foundation for 

future work on real-world sensing scenarios. 
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Classes FiLM- 

Fusion Net 

FiLM- 

Fusion 

Net(RD) 

Sparse 

PointNet 

[13] 

Bowing 0.9916 0.9832 0.9333 

Waving 1.0000 0.9957 0.9100 

UpDOwn 0.9811 0.9937 0.9018 

LieDown 1.0000 0.9710 0.9444 

SitDown 0.9960 0.9598 0.8571 

Stand 1.0000 0.9890 0.9216 

TurnChair 0.9341 0.9725 0.8557 

Squatting 0.9840 0.9720 0.9018 


