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Abstract

Radar-based human activity recognition (HAR) increasingly leverages multiple signal representations
such as range—Doppler spectrograms, range—angle heatmaps, and point clouds. However, fusing these heterogeneous
modalities remains challenging due to representation—specific feature distributions. We propose FiLM-FusionNet, a
multimodal deep learning architecture that employs Feature-wise Linear Modulation (FiLM) to adapt intermediate
features according to representation context, enabling robust and efficient fusion. Experimental results demonstrate
that FiLM conditioning significantly improves classification accuracy compared to single-modality baselines and
conventional fusion strategies. Ablation studies confirm that FiLM and multimodal integration provide complementary
gains, supporting accurate radar—-based HAR for real-world applications.

1. Introduction classification, demonstrating the importance of
combining spatial and temporal cues [7]. Ayaz et al

Human activity recognition (HAR) using radio performed a systematic comparison of CNN
frequency (RF) and millimeter-wave (mmWave) radar architectures including MobileNetV2, VGG-16/19, and

has gained significant momentum due to its privacy-— ResNet-50 across STET, SPWVD, and time-range
preserving nature, robustness to lighting or occlusion, representations, reporting strong performance
and suitability for smart environment applications. efficiency trade-offs, relevant for real-time radar
Device-free sensing surveys emphasize that deep HAR [8]. More recently, Wu et al introduced
learning and transfer learning have become central to RadMamba, a radar-adapted Mamba State-Space
RF-based HAR, especially in addressing challenges architecture achieving competitive accuracy with
such as domain shift, multimodal variability, and drastically reduced parameters, demonstrating the
generalization across environments [1]. Similarly, feasibility of efficient on-device radar HAR [9].
recent AloT-focused reviews highlight the need for
scalable, edge-deployable architectures capable of
handling practical sensing constraints in real-world
IoT systems [2].

In radar based HAR specifically, earlier

Despite these advancements, cross—device
generalization in mmWave HAR remains largely
unsolved. Most existing datasets rely on a single radar
type or fixed configuration, making it difficult to
evaluate how modulation schemes, antenna geometry,
benchmarking —and community-driven challenges center frequencies, and data representations influence

played an important role in .e.stablishing evaluation performance. This limitation directly motivated the
standards. The Human Activity Radar Challenge creation of the MM-DCDR dataset, which

introduced a unified assessment framework using the systematically captures variability across radar
Glasgow “Radar Signatures of Human Activities” hardware and signal representations. MM-DCDR
dataset, demonstrating the progress and limitations of contains 352k frames collected from 11 subjects
existing algorithms, especially under varied activity performing 8 common actions at 1 m and 2 m
types and subject conditions [3], [4]. Parallel efforts distances, using TI AWR1843 (77- 81 GHz FMCW)
have expanded multimodal sensing datasets. For and IMAGEVK-74 (63— 67 GHz SFCW) radars. These
example, OPERAnet integrates RF and vision-based sensors differ substantially in array configuration
sources to encourage cross—sensor and (AWR1843: 3 TX x 4 RX; IMAGEVK-74: 20 TX x 20
cross-representation research in human activity RX), modulation format, frame rate, angular resolution,
monitoring [5]. The Open Radar Initiative further and sampling parameters [10]. The dataset also offers

addresspd fragmeptation 1r1 .radar datasets by three complementary representations, range— Doppler
promoting standardized acquisition procedures and a maps, range— angle heatmaps, and point clouds

publicly accessible micro-Doppler benchmark [6]. enabling  researchers to systematically study
Deep learning models designed for radar HAR representation—device interactions.

continue to evolve toward more compact, accurate, The corresponding MM-DCDR benchmark paper

and  robust arch1tectgres. Tan et al proposed a further emphasizes that, although many HAR models

two-stream CNN- BiGRU model that leveraged optimize well for a single radar system, they do not

magnitude and phase features for micro-Doppler generalize across devices or representation domains,



underscoring the need for architectures that explicitly
incorporate device—aware processing [10]. This

naturally motivates the development of models
equipped with mechanisms such as sensor
conditioning, representation fusion, and
device-invariant feature learning to tackle

cross-radar heterogeneity.

Contribution. In response, this work introduces
MM-DCDR-FusionNet, a multimodal deep learning
framework designed for HAR. The model integrates
three parallel encoders for range-Doppler, range-
angle, and point—-cloud data, combined with a
sensor—-conditioned Feature-wise Linear Modulation
(FiLM) module that adapts features based on the radar
source. This architecture is aligned with current
trends in radar HAR toward multimodal fusion,
compact representations, and device-aware
adaptation.

II. Method

FiLM-FusionNet is a multimodal deep learning
framework designed to integrate heterogeneous radar
representations for human activity recognition (HAR).
The central challenge addressed is the mismatch in
feature distributions across representations such as
range—Doppler (RD) and range-angle (RA) heatmaps,
and radar point clouds. To mitigate this, Feature-wise
Linear Modulation (FiLM) is employed to adapt
intermediate features dynamically, enabling robust
fusion across modalities while maintaining a compact
computational footprint.

The architecture comprises three parallel encoders
tailored to distinct radar representations. The RD
encoder utilizes a convolutional backbone augmented
with squeeze-and-excitation (SE) blocks [11] to
emphasize informative micro-Doppler bands and
suppress less relevant activations. The RA encoder
mirrors this design to capture spatial structure and
angular cues characteristic of RA heatmaps. For point
cloud input, a PointNet-style multilayer perceptron

[12] aggregates  per-point  attributes-geometric
coordinates, Doppler, and intensity into a fixed length
embedding through global max pooling. Each encoder

outputs a compact representation that preserves the

salient  information required for downstream
classification.

Cross-modality  alignment is  facilitated by
FiLM-based conditioning applied to intermediate

feature maps in the RD and RA streams. Channel-wise
affine transformations are generated from learnable
embeddings that encode representation context,
allowing features to be modulated according to the
statistical characteristics of each modality. This
conditioning enhances compatibility between modality
embeddings in the shared latent space without
reliance on device specific metadata, thereby focusing
the adaptation on representation differences rather
than hardware identities.

Following conditioning, modality embeddings are
concatenated into a unified latent vector and
processed by a lightweight multilayer perceptron that

balances capacity and efficiency before producing
class logits via a softmax layer. Inputs are normalized
to fixed dimensions to enable batched training: RD and
RA heatmaps are resized via interpolation, and point
clouds are padded or subsampled to a consistent
number of points. Data augmentation is intentionally
omitted to isolate the effects of FILM conditioning and
multimodal fusion on recognition performance.

The overall design emphasizes modularity and
compactness, enabling consistent training and
inference across heterogeneous radar representations
without reliance on data augmentation. To isolate the
impact of representation-aware conditioning and
multimodal fusion, inputs are standardized in size, and
training employs a cross-entropy objective with Adam
optimization.

III. Result

Performance evaluation is conducted on radar
datasets, MM-DCDR, which includes eight activity
classes. The overall accuracy and per-class accuracy
are reported to capture variability across different
motion patterns. Comparisons include single-modality
baselines and the proposed FilLM-conditioned
multimodal model, followed by ablation studies that
examine the impact of FiLM layers and modality fusion.
These results provide a comprehensive view of how
representation-aware conditioning improves
classification accuracy and robustness across
heterogeneous radar representations.

All  experiments were conducted on the
MM-DCDR dataset comprising eight activity classes.
The FiLM-FusionNet model and single—-modality
baselines were trained for 10 epochs using the Adam
optimizer with a learning rate of 1X1073, batch size of
16, and input resolution of 128%128 for image-based
representations for the heatmaps. Point cloud inputs
were standardized to a fixed number of points, and no
data augmentation was applied to isolate the effect of
FiLM conditioning and multimodal fusion. The loss
function was cross—entropy.

From Table 1 and 2, FiLM-FusionNet achieves the
highest accuracy across all eight classes, with most
activities exceeding 98% and four classes reaching
100%. The RD only variant remains competitive and
even surpasses the full model on UpDown and
TurnChair, underscoring the strong discriminative
power of spectrogram features for periodic or angular

motions. SparsePointNet [13] consistently trails the
FiLM-based models,

TurnChair, highlighting the
point-cloud-only representations for fine—grained
temporal patterns. Overall, FiLM conditioning and
multimodal fusion deliver superior robustness and
accuracy compared to single-modality approaches
under standardized training conditions.

especially on SitDown and

limitations of



Table 1. Overall classification performance on
MM-DCDR (8 classes).

O e | e
; onNet (RD)

Accuracy 0.9890 0.9787 0.8918

Macro F1 0.9885 0.9780 0.8901

Params (M) 4.9 0.3-0.5

Table 2. Per—class accuracy (%) for eight activities in

the MM-DCDR dataset

Classes FiLM— II::LI;II/(; ISDI;?I:tSNeet
Fusion Net Net(RD) [13]
Bowing 0.9916 0.9832 0.9333
Waving 1.0000 0.9957 0.9100
UpDOwn 0.9811 0.9937 0.9018
LieDown 1.0000 0.9710 0.9444
SitDown 0.9960 0.9598 0.8571
Stand 1.0000 0.9890 0.9216
TurnChair | 0.9341 0.9725 0.8557
Squatting | 0.9840 0.9720 0.9018

IV. Conclusion

This work introduced FiLM-FusionNet, a multimodal
deep learning architecture for radar—-based human
activity recognition that leverages Feature-wise
Linear Modulation (FiLM) to adapt intermediate
features across heterogeneous representations.
Evaluated on the MM-DCDR dataset, the proposed
model achieved state-of-the-art accuracy (98.9%)
and macro F1 (98.85%), outperforming both range—
Doppler-only and point—-cloud-only baselines. Per-
class analysis confirmed the robustness of FiLM
conditioning and multimodal fusion, particularly for
complex activities such as chair transitions and
squatting. The compact design and standardized
training configuration demonstrate that
representation—aware modulation can significantly
enhance radar HAR performance without reliance on
data augmentation, providing a strong foundation for
future work on real-world sensing scenarios.
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