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요 약

본 논문은 다항식 초기화와 반복을 결합한 동형암호 기반 역행렬 알고리즘을 제안한다 정밀한             Chebyshev Newton-Schulz . 

초기값 설정으로 필요한 반복 횟수를 최소화하여 를 줄였으며 의 기반 행렬 곱셈과 multiplicative depth , GL scheme trace 

호환되어 개 행렬을 단일 암호문에서 동시에 처리하여 높은 처리량을 제공한다 평문 실험에서 총 에 의 . depth 13 1e-15
정밀도를 달성하였다.           

서 론. Ⅰ

동형암호 는 암호화된 상태에서  (Fully Homomorphhic Encryption, FHE)

데이터 연산을 가능하게 하여 프라이버시를 보존하면서 클라우드 컴퓨팅

이나 머신러닝을 수행할 수 있게 한다 와 같은 . BGV[1], BFV[2], CKKS[3]

기반 스킴들은 덧셈과 곱셈 연산을 효율적으로 지원하지만RLWE FHE , 

링 구조 특성 상 나눗셈과 역수 연산은 직접하는 것이 불가능하다 그러나 . 

역행렬 계산은 선형 회귀  와 같은 통계 분석 및 머신러닝

의 핵심 연산이다.

이러한 제약을 극복하기 위해 본 논문에서는 곱셈과 덧셈만을 사용하여 

역행렬에 수렴하는 반복적 방법을 채택하였다 수렴의 안정성을 보장하기 . 

위해 정규화 전략을 도입하고 기존 연구와 달리 다항식을 통, Chebyshev 

한 정밀한 초기값 설정으로 표준 반복법의 회로 깊이 문제Newton-Schulz 

를 해결하여 필요한 반복 횟수를 최소화하였다 또한 동형암호의 핵심 제. 

약인 관리를 위해 알고리즘을 multiplicative depth Paterson-Stockmeyer 

적용하였다.

제안 알고리즘은 과의 호환성을 중요하게 고Gentry-Lee (GL) shceme[4]

려하였다 은 다변수 링 구조를 통해 효율적인 연산과 . GL scheme[4] SIMD 

기반 행렬 곱셈을 제공하므로 역행렬 계산의 핵심인 반복적 행렬 trace , 

곱셈을 효과적으로 수행할 수 있다 특히 . 개의 행렬을 단일 암호문에 

패킹하여 동시에 처리할 수 있어 여러 행렬의 역행렬을 병렬로 계산할 수 , 

있다.

관련 연구. Ⅱ

동형암호 기반 행렬 연산에 관한 연구는 최근 활발히 진행되고 있다 . 

와 는 다변수 링 구조 Gentry Lee[4] ′    〈   
〉를 활용하여 개의  × 행렬을 단일 다항식에 인코딩하고 , 

암호문 간 행렬 곱셈을 연산을 통해 번의 다항식 계수 행렬 곱셈으trace 4

로 환원한다 행렬이 슬롯에 직접 인코딩되므로 변환 오.  coeff icient-slot 

버헤드가 없으며 행렬 크기를 링 차원과 독립적으로 조정 가능하다 또한 , . 

개의 서로 다른 행렬을 단일 암호문에 패킹하여 동시에 연산할 수 있

어 반복적 행렬 곱셈인 역행렬 계산을 여러 행렬에 대해 병렬로 수행할 , 

수 있는 구조이다.

동형암호 기반 역행렬 계산 연구에서 반복법 의 표준 형Newton-Schulz [5]

태    는 적절한 초기값이 주어지면 차 수렴을 보장한2

다 그러나 동형암호 환경에서는 각 반복이 를 소모. multiplicative depth 2

하므로 충분한 정밀도 달성을 위해 필요한 반복 횟수가 전체 회로 깊이를 , 

결정하는 핵심 요소가 된다 이러한 문제를 해결하기 위해 기존 연구들은 . 

표준 반복법을 대체하거나 변형하는 방식을 택하였다Newton-Schulz . 

은 반복적 점화식 대신 Cheon et al.[6 ]  ≈


 

 




 여기서  ( 는 정

규화된 행렬 형태의 곱셈 누적 구조를 사용하여 의 거듭제곱 차수로 회) 2

로 깊이를 관리하였다 은 반복 횟수를 줄이는 개선된 알고리. Kim et al.[7 ]

즘으로 깊은 곱셈 회로와 부트스트래핑 비용을 감소시켰다.

본 논문은 표준 반복법을 사용하되 초기값 문제를 해결하Newton-Schulz 

는 방식을 택하였다 다항식으로 를 정밀하게 근사하여 우. Chebyshev 1/x

수한 초기값 를 설정함으로써 필요한 반복 횟수를 최소화하고 전체 

를 최적화한다multiplicative depth . 

제안 방법. Ⅲ

제안하는 알고리즘은 반복법 을 기반으로 하며 네 단 Newton-Schulz [5] , 

계로 구성된다 반복법은 . Newton-Schulz   의 형태로 

역행렬을 근사한다 초기값 . 가  에 충분히 가까우면 차 수렴을 보2

장하며 오직 행렬 곱셈과 덧셈만을 사용하므로 동형암호 환경에 적합하, 

다. 

알고리즘의 전체 구조는 의 행렬 연산 특성을 고려하여 설GL scheme[4]

계되었다 첫 번째 단계는 정규화이다 알고리즘의 수렴을 . . Newton-Schulz 

위해 Frobenius norm ∥∥ 

 


를 사용하여 ′ ∥∥로 

행렬을 스케일링 한다 이를 통해 . ′의 모든 고윳값은 구간에 위치(0 ,1) 

하게 된다. 

두 번째 단계는 다항식 근사를 이용한 초기화이다Chebyshev . Newton–
반복법의 수렴 속도는 초기 오차 Schulz ∥ ′∥에 의해 결정되므로 

정밀한 초기값이 필수적이다 기존 연구들이 표준 반복법. Newton-Schulz 



을 채택하지 않은 주요 이유는 단순한 초기화(   로는 많은 반복이 )

필요하여 회로 깊이가 과도하게 증가하기 때문이다 본 논문은 함수 . 

 를 구간  에서 차수 의 다항식으로 근사하여 Chebyshev 

이 문제를 해결한다 다항식은 최소 최대 오차. Chebyshev (minimax error)

를 달성하며 초기값은 ,   ′ 로 설정된다 오차는 차수 증가에 따라 . 

지수적으로 감소하므로 적절한 차수 선택으로 초기 오차를 충분히 작게 , 

만들어 표준 반복법을 유지하면서도 필요한 반복 횟수를 Newton-Schulz 

최소화할 수 있다.

다항식 평가의 효율성을 위해 알고리즘 을 적용한Paterson-Stockmeyer [8]

다 이 알고리즘은 차수 . 의 다항식 평가에 필요한 multiplicative depth

를 로 줄인다.  ⌈⌉로 설정하고     ⋯  를 미

리 계산한 후 다항식을 ,      
⋅ 

⋅⋯의 형태로 재

구성하여 전체 계산을 효율적으로 수행 가능하다.

세 번째 단계는 반복이다 초기값 Newton-Schulz . 로부터  

′를 반복 수행한다 초기 오차를 .   ′라 하면, 

번 반복 후 오차는   



로 지수적으로 감소한다 각 반복은 회의 행. 2

렬 곱셈을 요구하므로 가 씩 증가한다multiplicative depth 2 . GL scheme[4]

의 패킹 구조를 활용하면, 개의 서로 다른 행렬을 동시에 처리하여 

배의 처리량을 달성할 수 있다.

네 번째 단계는 비정규화이다 정규화된 행렬 . ′에 대한 역행렬 근사

을 얻은 후,  ≈⋅∥∥로 복원된다 에. GL scheme[4]

서는 동시에 처리되는 각 행렬마다 다른 정규화 계수를 적용해야 한다.

전체 는 multiplicative depth     × 로 계산된다 여기서 . 

 ⌈⌉ 은 알고리즘 을 적용한 다항Paterson-Stockmeyer [8]

식 평가의 로 대략 depth  이고, 는 의 반복 횟Newton-Schulz

수이다 각 반복은 를 소모한다. Newton-Schulz depth 2 .

실험 결과IV . 

제안 알고리즘을 평문 환경에서 검증하였다 .   으로 설정한 뒤, 

  로 양정부호 행렬을 생성하였다 근사는 차수 . Chebyshev  , 

구간  에서   로 설정하였다.

초기화 후 초기 오차 Chebyshev ∥ ′∥는 로 수렴 조건을 만0 .292

족하였다 표 은 반복의 차 수렴 특성을 보여준다 회 . 1 Newton-Schulz 2 . 4

반복 후 1 미만의 정밀도 수준에 도달하였으며 최종 상대 오차는  , 

 × 이었다.

표 반복 과정의 수렴 [ 1] Newton-Schulz (   차수 , Chebyshev 15)

표 차수에 따른 성능 비교[ 2] Chebyshev 

표 는 차수가 초기화 성능에 미치는 영향을 보여준다 차수가 2 Chebyshev . 

증가할수록 초기 오차가 감소하여 반복 횟수가 줄어든다 차수 가 총 . 15

으로 가장 최적의 선택임을 확인하였다depth 13 .

결론V. 

본 논문에서는 과의 호환성을 고려한 동형암호 기반 역행렬  GL scheme

계산 알고리즘을 제안하였다 반복법과 초기. Newton-Schulz Chebyshev 

화를 결합하여 행렬 곱셈과 덧셈으로 구성된 알고리즘을 설계하였으며, 

이는 의 효율적인 배치 연산과 기반 행렬 곱셈을 직접 GL scheme trace 

활용할 수 있다.

평문 실험에서   인 행렬에 대해 차수 Chebyshev 15, Newton-Schulz 

반복 회로 의 정밀도를 달성하였으며 총 는 4 1e-15 , multiplicative depth 13

이다. 

실용화를 위한 핵심 과제는 정규화 과정의 동형암호 구현이다. Frobenius 

의 계산은 각 원소의 제곱 전체 합 그리고 제곱근으로 구성된다 제norm , , . 

곱과 전체 합은 곱셈과 회전 합으로 계산 가능하지만 제곱근 Hadamard , 



 


 와 ∥∥는 다항식 근사가 필요하여 추가 를 소모한depth

다 이러한 비선형 연산을 효율적으로 근사하고 전체 를 최소화하는 . depth

것이 주요 과제이다 제안 알고리즘은 선형 회귀 등 다양한 . , PCA 

응용에 활용될 수 있다privacy-preserving machine learning .
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