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Abstract

Accurate State of Health (SOH) estimation is critical for the safety and reliability of lithium-ion batteries in
electric vehicles and energy storage systems. This paper proposes a Variational Quantum Algorithm (VQA)
approach for optimizing Long Short-Term Memory (LSTM) neural network hyperparameters in battery SOH
estimation. Using a 4-qubit parameterized quantum circuit with hardware-efficient ansatz, we encode
hyperparameters including hidden layer size, network depth, dropout rate, and learning rate. The VQA optimizer
iteratively samples configurations from quantum measurements and minimizes LSTM validation loss using the
COBYLA classical optimizer. Experiments on the NASA Battery Dataset demonstrate that the quantum-optimized
LSTM achieves a Mean Absolute Error (MAE) of 1.24% and R2 of 0.963, representing a 15.6% improvement over
classical grid search optimization.
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I. Introduction trained and evaluated, and the validation loss is fed

back to update the quantum circuit parameters.
Accurate State of Health (SOH) estimation is critical

for lithium—-ion battery reliability in electric vehicles

and energy storage systems [1]. While LSTM VaR Opimizer
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networks effectively capture temporal dependencies in

battery cycling data [2], their performance depends
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search optimization is computationally expensive. Wﬁﬁ

Variational Quantum Algorithms (VQAs) offer efficient

parameter space exploration through quantum
superposition [3]. This paper proposes a VQA-based

LSTM  hyperparameter optimization framework,
achieving 15.6% MAE improvement over classical grid Figure 1. System Architecture Diagram
search on the NASA Battery Dataset.

I. Method

B. Variational Quantum Circuit (VQA)

. The VQA optimizer employs a hardware-—efficient
A. System Architecture ansatz with 4 qubits and 2 layers of parameterized
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The proposed VQA-LSTM framework consists of rotation - gates ach fayer consists o yoan ’

. . . rotations on each qubit followed by circular CNOT
three main components: (1) data preprocessing of

entangling gates. The total circuit contains 16
battery voltage, current, and temperature sequences

from the NASA Battery Dataset, (2) a 4-qubit
variational quantum circuit for hyperparameter
sampling, and (3) a bidirectional LSTM with attention e Qubits 0-1: Hidden layer size € {32, 64, 128,
mechanism for SOH prediction. Fig. 1 illustrates the 256}

overall system architecture, showing the hybrid e Qubits 2: Number of LSTM layers € {2, 3}
quantum-—classical optimization loop where the VQA

trainable parameters. After circuit execution, qubits
are measured and decoded to hyperparameter values:

samples hyperparameter configurations, the LSTM is *  Qubits 3: Dropout rate € {0.1, 0.2}



The circuit parameters are updated using the
COBYLA optimizer to minimize LSTM validation loss,
circuit to learn optimal

enabling the quantum

hyperparameter configurations.

C. LSTM Architecture and Training

The neural network consists of a bidirectional LSTM
with attention—based pooling for SOH regression.
Input features include normalized voltage, current, and
temperature sequences (100 timesteps x 3 features)
with auxiliary resistance features. Training employs
Adam optimizer with early stopping (patience=20).

D. Dataset and Experimental Setup

We evaluate on the NASA Battery Dataset [4],
containing cycling data for four Li-ion cells (BO0O5,
B0006, BO0O07, BO0O18) until end-of-life. Training uses
cells BO005, BOO06, and BOO18, while BOOO7 serves
as the test set. Fig. 2 shows SOH degradation patterns
across all cells.
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Figure 2. SOH Degradation Curves for NASA Battery Dataset
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Figure 3. SOH Prediction - True vs Q-LSTM with
Confidence Band

Fig. 3 presents SOH prediction results on the test
battery, demonstrating accurate tracking of capacity
degradation with 95% confidence interval.

Table I: Performance Comparison

Method MAE (%) | RMSE (%) R2
LSTM (Grid Search) 1.47 2.14 0.93
LSTM (VQA) 1.24 1.63 0.96
Improvement +15.6% +23.8% +2.9%

II. Conclusion

This paper demonstrated that Variational Quantum
LSTM
hyperparameters for battery SOH estimation. The
proposed 4—qubit VQA achieved MAE of 1.24% and R?
of 0.963, representing a 15.6% improvement over

Algorithms can effectively optimize

classical grid search in only 20 iterations. The model
successfully captures both gradual degradation and
accelerated capacity fade characteristic of lithium—-ion
aging. Future work will explore noise-resilient circuits
for NISQ hardware deployment.
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