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Abstract 

 

In Orthogonal Frequency Division Multiplexing (OFDM) systems, accurate channel estimation is essential for reliable 

communication, particularly in high-mobility and frequency-selective fading environments. While Deep Neural Networks (DNNs) 

have demonstrated superior performance over classical methods, they typically incur high computational costs due to extensive 

non-linear operations. To address this, we introduce the Rank-Adaptive Attention-Aided MMSE (RA-A-MMSE) estimator. 

Building on the A-MMSE framework which learns an optimal linear filter via an Attention Transformer, the proposed RA-A-MMSE 

further incorporates a rank-adaptation mechanism to exploit the low-rank structure of the channel estimation filter. This approach 

allows for a flexible trade-off between estimation accuracy and computational complexity.  

 

Ⅰ. Introduction 

Accurate channel state information (CSI) is essential for 

reliable demodulation in Orthogonal Frequency Division 
Multiplexing (OFDM) systems [1]. This is particularly critical 

in modern wireless systems, such as 5G and 6G [2], where 

channels exhibit high variability and frequency selectivity due 

to high user mobility and millimeter-wave (mmWave) 
propagation. While the Least Square (LS) method is simple, it 

is highly vulnerable to noise. Conversely, the Minimum Mean-

Squared Error (MMSE) estimator is statistically optimal but 

requires prior knowledge of second-order channel statistics 

and involves high computational complexity due to matrix 
inversions. 

 To address these limitations, Deep Neural Network 

(DNN)-based approaches have been introduced. However, 

most existing DNN methods suffer from high inference 
complexity due to extensive non-linear operations. In our 

previous work, we proposed the Attention-Aided MMSE (A-

MMSE), which leverages an Attention Transformer to learn 

an optimal linear MMSE filter from data. A-MMSE performs 

estimation via a single linear operation during inference, 
eliminating non-linear activations. 

Despite its efficiency, the A-MMSE filter matrix size 

(𝑁𝑀 × 𝐿) grows with the number of subcarriers and antennas, 

posing memory and computational challenges for resource-
constrained devices8. To overcome this, we propose the 

Rank-Adaptive A-MMSE (RA-A-MMSE). This method 

dynamically adjusts the rank of the estimation filter, 

significantly reducing computational overhead while 

maintaining high estimation accuracy. 

 

Ⅱ. Method 

1. Linear Estimation Structure of A-MMSE  

The core of the A-MMSE approach is to replace 

complex non-linear neural networks with a learned 

linear filter. The estimated channel vector 𝐇'	  is 
obtained through a simple matrix-vector multiplication 

between the learned filter matrix 𝐖!"##$% ∈ ℂ&'×) and 

the received pilot vector 𝐘* ∈ ℂ): 
vec1𝐇'2 	= 	𝐖!"##$%𝐘* 

This linear structure decouples the complex learning 

process (training) from the estimation process 

(inference). 
2. Rank-Adaptive Module 

The RA-A-MMSE exploits the inherent low-rank 

property of the optimal MMSE filter. Instead of storing 

and computing the full-rank matrix 𝐖!"##$% , we 

decompose it into two smaller rank-𝑟  matrices, 𝐴 ∈
ℂ&'×+ and 𝐵 ∈ ℂ)×+, where 𝑟 ≪ 	min	(𝑁𝑀, 𝐿) [3]. 

3. Learning Mechanism 

To learn these low-rank matrices, we introduce a 

Rank-Adaptive (RA) module during training. The 
network learns trainable projection matrices 𝐔+ and 𝐕+ 
to constrain the A-MMSE filter: 

𝐖,!"!"##$% 	 = 	𝐖!"##$%	𝐔+ 	𝐕+- 



This formulation ensures that the rank of the resulting 

filter is bounded by 𝑟. By optimizing this structure end-

to-end, the RA-A-MMSE identifies the most significant 
subspace for channel estimation, effectively filtering out 

noise and reducing the number of parameters required. 
 

 
 

Ⅲ. Simulation Results 
In this section, we analyze the computational complexity of 

the proposed RA-A-MMSE in terms of floating-point 

operations (FLOPs) required for inference and evaluate its 

trade-off with channel estimation accuracy (NMSE).  

1. Computational Complexity Analysis (FLOPs) 
We quantified the inference complexity by counting the 

number of real-valued arithmetic operations. The 

quantitative analysis reveals that the computational cost 

of the proposed method is drastically lower than that of 

conventional approaches. 
l Conventional Methods: Deep learning-based 

methods such as ChannelNet [4] and 

Channelformer [5] require approximately 1.35 ×
10.  and 10 × 10/  FLOPs, respectively, due to 
their reliance on extensive non-linear operations 

and complex architectural layers. Similarly, the 

SP-based MMSE estimator requires about 11 ×
10/ FLOPs due to matrix inversions. 

l Proposed RA-A-MMSE: In contrast, the RA-A-
MMSE requires only linear matrix multiplications. 

Its complexity is proportional to the rank $r$, 

approximated as 8608𝑟 FLOPs (for 𝐿 = 36). Even 

with a rank of 𝑟 = 12, the RA-A-MMSE reduces 
the computational cost by approximately 35% 

compared to the full-rank A-MMSE. 

 

2. NMSE vs. FLOPs Trade-off 

The trade-off between average NMSE and 
computational complexity demonstrates that the RA-A-

MMSE establishes a new Pareto frontier in efficiency: 

l Drastic Reduction in Complexity: The RA-A-

MMSE reduces computational complexity by 

approximately 95.1% compared to the average 
FLOPs of MMSE and Channelformer. Specifically, 

it requires only 1.5% of the computational 

resources demanded by Channelformer or MMSE 

(a 98.5% reduction) 
l Superior Accuracy: Despite this massive reduction 

in complexity, the RA-A-MMSE achieves 

approximately 36% to 46.3% lower average NMSE 

compared to the baselines. 

Consequently, the RA-A-MMSE successfully pushes the 

boundaries of the performance-complexity trade-off, 

achieving a new level of estimation accuracy at a 

computational cost that is orders of magnitude lower than 

state-of-the-art DNN-based estimators. 

 

Ⅳ. Conclusion 
In this paper, we presented the RA-A-MMSE, a 

computationally efficient extension of the A-MMSE 
framework for OFDM channel estimation. By leveraging the 

Attention Transformer to learn a linear filter and applying a 

rank-adaptive mechanism, the proposed method achieves a 

superior trade-off between performance and complexity. 
Our findings confirm that the RA-A-MMSE is capable of 

delivering powerful estimation performance with a fraction of 

the computational cost required by state-of-the-art DNN-

based estimators. Consequently, the RA-A-MMSE offers a 

practical and scalable solution for next-generation wireless 
systems, enabling high-performance channel estimation even 

on hardware with severe resource constraints. 
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