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요 약  
 

본 논문은 채널의 동특성(Dynamics)을 사전에 알 수 없고(Unknown MDP), 채널 상태 정보(CSI)마저 불완전한(POMDP) 

하향링크 비직교 다중 접속(NOMA) 시스템을 다룬다. 이러한 복합적인 불확실성 환경에서 사용자 공정성과 스펙트럼 

효율을 동시에 최적화하기 위해, 에이전트가 채널의 확률 분포를 추정하여 불확실성을 정량화하는 '확률 상태 인지형' 

심층 강화학습(DRL) 프레임워크를 제안한다. 제안 기법은 미지의 채널 변화 패턴을 학습함과 동시에, 불확실한 관측 

정보를 확률적으로 보정하여 의사결정에 활용함으로써 기존 기법 대비 강인한 성능을 입증하였다. 

 

Ⅰ. 서 론  

6G 및 IoT 네트워크를 위한 비직교 다중 접속(NOMA) 

기술은 높은 주파수 효율을 제공하지만, 최적 자원 

할당은 NP-hard 문제에 속한다 [1]. 실제 무선 

환경에서의 자원 할당은 두 가지 핵심적인 난제에 

직면한다. 첫째, 페이딩 채널의 복잡한 천이 

확률(Transition Dynamics)을 사전에 알 수 없는 

'Unknown MDP' 문제이다 [2]. 둘째, 피드백 지연과 

추정 오차로 인해 기지국이 현재의 정확한 상태를 

관측할 수 없는 '부분 관측 마르코프 결정 

과정(POMDP)' 문제이다 [3]. 기존 최적화 기법이나 

단순한 강화학습은 완벽한 CSI 를 가정하거나 환경의 

동특성을 충분히 고려하지 못하여 성능이 저하된다. 이에 

본 논문에서는 미지의 채널 동특성을 데이터로부터 

학습하고, 동시에 불완전한 관측 정보를 확률적 

믿음(Belief) 상태로 변환하여 POMDP 문제를 해결하는 

새로운 DRL 프레임워크를 제안한다. 

Ⅱ. 본론  

본 논문에서는 단일 기지국(BS)이 𝑁𝑁 명의 사용자와 

𝐾𝐾개의 직교 부채널을 통해 통신하는 하향링크 NOMA 

시스템을 고려한다. 시간 𝑡𝑡 에서의 송신 신호 𝑥𝑥𝑘𝑘(𝑡𝑡)는 

중첩 코딩(Superposition Coding)되어 전송되며, 사용자 

𝑛𝑛이 부채널 𝑘𝑘에서 수신하는 신호 𝑦𝑦𝑛𝑛,𝑘𝑘(𝑡𝑡)는 채널 이득 

ℎ𝑛𝑛,𝑘𝑘(𝑡𝑡)와 가산 백색 가우시안 잡음 𝑧𝑧𝑛𝑛,𝑘𝑘(𝑡𝑡)에 의해 다음과 

같이 결정된다 [4]. 

𝑦𝑦𝑛𝑛,𝑘𝑘(𝑡𝑡) = ℎ𝑛𝑛,𝑘𝑘(𝑡𝑡) � �𝑝𝑝𝑗𝑗,𝑘𝑘𝑠𝑠𝑗𝑗,𝑘𝑘(𝑡𝑡) + 𝑧𝑧𝑛𝑛,𝑘𝑘(𝑡𝑡)
𝑗𝑗∈𝒩𝒩𝑘𝑘(𝑡𝑡)

. 

수신단에서는 순차적 간섭 제거(SIC)를 수행하며, 이때 

사용자 𝑛𝑛의 신호 대 간섭 잡음비(SINR)는 다음과 같다. 

SINRn,k(𝑡𝑡) =
𝑝𝑝𝑛𝑛,𝑘𝑘(𝑡𝑡)�ℎ𝑛𝑛,𝑘𝑘(𝑡𝑡)�2

∑ 𝑝𝑝𝑗𝑗,𝑘𝑘(𝑡𝑡)�ℎ𝑛𝑛,𝑘𝑘(𝑡𝑡)�2 + 𝜎𝜎2𝑗𝑗∈𝒩𝒩𝑘𝑘(𝑡𝑡),�ℎ𝑗𝑗�
2>|ℎ𝑛𝑛|2

. 

본 연구의 목표는 채널 할당 지시자 𝑢𝑢𝑛𝑛,𝑘𝑘(𝑡𝑡) ∈  {0,1}와 

전력 할당 𝑝𝑝𝑛𝑛,𝑘𝑘(𝑡𝑡) 를 최적화하여 시스템 총 전송률과 

공정성을 최대화하는 것이며, 이는 다음과 같은 최적화 

문제로 정식화된다 [7]. 

 

max
{𝑢𝑢,𝑝𝑝}

�𝑅𝑅𝑛𝑛(𝑡𝑡) − 𝜁𝜁�1− 𝐽𝐽(𝑡𝑡)�
𝑁𝑁

𝑛𝑛=1

 

 

subject to ��𝑢𝑢𝑛𝑛,𝑘𝑘(𝑡𝑡)𝑝𝑝𝑛𝑛,𝑘𝑘(𝑡𝑡) ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=1

, 

𝑝𝑝𝑛𝑛,𝑘𝑘(𝑡𝑡) ≥ 0, 

�𝑢𝑢𝑛𝑛,𝑘𝑘(𝑡𝑡) = 1
𝐾𝐾

𝑘𝑘=1

. 

여기서 𝐽𝐽(𝑡𝑡)는 Jain's Fairness Index 로, 각 사용자의 

시간 평균 전송률 𝑅𝑅�𝑛𝑛(𝑡𝑡)를 기반으로 J(t) = (∑𝑅𝑅�𝑛𝑛(𝑡𝑡))2

𝑁𝑁∑(𝑅𝑅�𝑛𝑛(𝑡𝑡))2
와 

같이 계산된다 [7]. 이때 평균 전송률은 𝑅𝑅�𝑛𝑛(𝑡𝑡) = (1 −
𝛼𝛼)𝑅𝑅�𝑛𝑛(𝑡𝑡 − 1) + 𝛼𝛼𝑅𝑅𝑛𝑛(𝑡𝑡) 로 업데이트되므로, 현재의 공정성 

계산에는 과거의 전송 이력이 필수적이다. 따라서 본 

문제는 순차적 의사결정 문제(Sequential Decision 

Process)가 되며, 기지국이 환경의 동특성을 

모르는(Unknown MDP) 동시에 피드백 지연으로 인해 

정보가 불완전한 상황을 반영하여 부분 관측 마르코프 

결정 과정(POMDP)으로 정의된다 [3]. 

구체적으로 본 POMDP 는 튜플 ⟨𝑆𝑆,𝑂𝑂,𝐴𝐴,𝑅𝑅⟩로 정의된다. 

먼저 상태 𝑆𝑆𝑡𝑡 = {𝑔𝑔𝑡𝑡,𝑅𝑅�(𝑡𝑡),𝐴𝐴𝑡𝑡−1} 는 기지국이 관측할 수 

없는 실제 채널 이득 벡터 𝑔𝑔𝑡𝑡 와 마르코프 성질을 

만족시키기 위한 평균 전송률 𝑅𝑅�(𝑡𝑡) , 이전 행동 𝐴𝐴𝑡𝑡−1을 

포함한다. 반면, 에이전트가 획득하는 관측 𝑂𝑂𝑡𝑡 는 과거 

𝐿𝐿개의 관측된 채널 이득 목록 𝑔𝑔�𝑡𝑡와 해당 정보의 경과 

시간 age(t)  등으로 구성된다. 즉, Ot =
{𝑔𝑔�𝑡𝑡 , age(t),𝑅𝑅�(𝑡𝑡), At−1} 이며, 여기서 𝑔𝑔�𝑡𝑡 는 단순히 현재 

시점의 값이 아닌 과거 관측치들의 시퀀스를 포함하여 

에이전트가 채널의 시계열적 패턴을 추론할 수 있도록 

한다. 이에 대응하는 행동 𝐴𝐴𝑡𝑡  =  {𝑢𝑢(𝑡𝑡), 𝑝𝑝(𝑡𝑡)}는 이산적인 

채널 할당과 연속적인 전력 할당을 동시에 결정하는 

결합 벡터이며, 보상 𝑅𝑅𝑡𝑡 는 최적화 목표와 동일하게 

∑ 𝑅𝑅𝑛𝑛(𝑡𝑡) − 𝜁𝜁�1 − 𝐽𝐽(𝑡𝑡)�𝑁𝑁
𝑛𝑛=1 로 정의되어 에이전트가 효율성과 

공정성 간의 트레이드오프를 학습하도록 유도한다[7]. 

이러한 POMDP 문제를 해결하기 위해, 본 논문은 

PPO(Proximal Policy Optimization) [6] 기반의 

에이전트에 LSTM 을 결합하고, 확률 분포 예측 보조 

작업(Auxiliary Task)을 도입한다. 에이전트의 LSTM 



네트워크는 과거의 관측 이력 𝐻𝐻𝑡𝑡를 입력받아 시계열적 

특성을 학습하며, 다음 시점의 채널 이득 �ℎ𝑛𝑛,𝑘𝑘(𝑡𝑡 + 1)�2이 

따르는 확률 분포의 파라미터 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (예: Rician 분포의 

𝜈𝜈,𝜎𝜎 )를 예측한다 [5]. 이 예측을 학습하기 위한 보조 

손실 함수 𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁은 실제 채널 값에 대한 Negative Log-

Likelihood로 정의된다. 

𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁 = −� log
𝑛𝑛,𝑘𝑘

𝑃𝑃 ��ℎ𝑛𝑛,𝑘𝑘(𝑡𝑡 + 1)�2�𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�. 

최종적으로 에이전트를 학습시키기 위한 전체 손실 함수 

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇은 PPO 알고리즘의 손실 함수 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃와 보조 작업의 

손실 함수 𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁의 가중 합으로 구성된다. 
𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁. 

이를 통해 에이전트는 단순한 채널 값 예측을 넘어, 

예측의 불확실성을 인지하고 이를 정책에 

반영하여(Risk-aware) 강인한 자원 할당을 수행하게 

된다. 

성능 검증을 위해 3GPP UMi 채널 모델을 기반으로 

 𝑁𝑁 = 6 , 𝐾𝐾 = 3, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 30 dBm  환경에서 모의실험을 

수행하였다. 제안 기법의 우수성을 검증하기 위해 다음 

세 가지 비교군(Baseline)을 설정하였다. 첫째, SR-1 과 

SR-2 는 각각 가중 합 전송률 최대화와 최소 QoS 

보장을 목표로 하는 전통적인 최적화 휴리스틱이다. 

이들은 미래 채널을 예측하지 못하고 현재의 관측 

정보에만 의존하며, 채널 당 사용자 수가 최대 2 명으로 

제한된다는 한계가 있다 [8]. 둘째, RL-LSTM(MSE)은 

제안 기법과 동일한 신경망 구조를 가지나, 보조 

작업으로 확률 분포가 아닌 다음 시점의 채널 값 자체를 

예측(점 추정)하며 평균 제곱 오차(MSE) 손실 함수를 

사용하는 모델이다. 

[그림 1]과 [그림 2]는 CSI 관측 주기𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜가 증가함에 

따른 스펙트럼 효율과 공정성 변화를 보여준다. 환경의 

동특성을 학습하지 못하는 기존 휴리스틱(SR-1, SR-2) 

및 Memoryless RL 은 관측 주기가 길어짐에 따라 

성능이 급격히 저하된다. 또한, 점 추정을 수행하는 RL-

LSTM(MSE)은 제안 기법보다 낮은 성능을 보이는데, 

이는 불확실한 환경에서는 단순한 값 예측보다 분포 

추정을 통한 위험 관리(Risk Management)가 필수적임을 

시사한다. 특히, 채널의 통계적 특성(LoS/NLoS 혼합)을 

가장 잘 반영하는 Rician 분포 기반의 RL-

DeepAR(Rician) 모델이 실제 채널 분포와의 불일치를 

최소화하여, Gaussian 이나 Exponential 모델 대비 가장 

뛰어난 스펙트럼 효율과 공정성을 달성함을 확인하였다. 

Ⅲ. 결론  

본 논문에서는 Unknown MDP 및 POMDP 특성을 

가진 NOMA 자원 할당 문제를 해결하기 위해, 환경의 

동특성을 학습하고 불확실성을 정량화하는 확률 상태 

인지형 DRL 프레임워크를 제안하였다 . 모의실험 결과, 

제안 기법은 불완전한 정보 하에서도 우수한 성능과 

강인함을 입증하였으며, 이는 차세대 통신 시스템의 자원 

관리에 효과적으로 적용될 수 있을 것이다. 
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그림 1. 관측 주기에 따른 스펙트럼 효율 

 
그림 2. 관측 주기에 따른 Jain’s Fairness Index 


