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Price Fluctuation Detection via XGBoost
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Table 1. Performance Matrix Z 3}

Class Recall F1-Score
0.90
0.89

0.89

Precision
7 A1) 0.87 0.93
7F4 &=H0) 0.91 0.84

Overall Accuracy - -

Table 2. Confusion Matrix 22}

o5
7H (1) 7H4 81EH0)
A 7 A (1) 30,328(TP) 5,836(FN)
7HA sk (0) 3,145(FP) 40,781(TN)
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