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요 약 

본 연구에서는 다수의 시간 단계에 걸친 무인항공기(UAV) 지원 통신 네트워크에서 UAV의 이동 에너지 소

비를 최소화하는 동시에 상향링크 최소 전송률을 최대화하기 위한 새로운 심층 강화학습 기반 최적화 기법

을 제안한다. 모의실험 결과를 통해 제안된 기법이 상향링크 통신 성능과 에너지 효율을 공동으로 고려한 

최적화 문제에서 효과적이고 강인한 성능을 달성함을 확인하였다. 

Ⅰ. 서 론  

무인 항공기(UAV)는 우수한 이동성과 자율 운용 

능력을 바탕으로 긴급 상황이나 통신 소외 지역에 

신속하게 배치되어 유연한 커버리지를 제공할 수 있어, 

6G 통합 네트워크의 핵심 구현 요소로 주목받고 있다. 

그러나 UAV 에 탑재된 에너지 용량은 제한적이어서, 

에너지 효율을 고려한 운용은 UAV 통신 시스템 

설계에서 여전히 중요한 연구 과제로 남아 있다[1]. 본 

연구에서는 DDPG (Deep Deterministic Policy Gradient) 

알고리즘을 적용하여 상향링크 성능과 에너지 효율을 

공동으로 최적화하고, 이를 통해 국소 최적해를 

도출하고자 한다. 

 

Ⅱ. 시스템 모델 및 제안하는 알고리즘  

UAV 의 높은 고도로 인해 지상 사용자로부터의 

상향링크 채널 𝐡𝐡𝑢𝑢𝑢𝑢𝑢𝑢 는 LoS 성분이 지배적인 환경으로 

가정하며, 대규모 경로 손실과 소규모 페이딩을 모두 

고려하여 모델링한다. 시간 슬롯 𝑠𝑠 ∈ 𝒮𝒮 = {1,2, … , 𝑆𝑆} 의 

𝑠𝑠번째 단계에서 상향링크 사용자 UE𝑢𝑢ul의 신호 대 간섭 

및 잡음비(Signal-to-Interference-plus-Noise Ratio: 

SINR)는 𝛾𝛾𝑢𝑢ul(𝑠𝑠) 로 정의된다. 이에 대응하는 상향링크 

전송률은 다음과 같이 표현된다. 
 

𝑅𝑅𝑢𝑢ul(𝑠𝑠) = 𝜂𝜂𝑢𝑢(𝑠𝑠)𝐵𝐵uplog 2(1 + 𝛾𝛾𝑢𝑢ul(𝑠𝑠)) = 𝜂𝜂𝑢𝑢𝐵𝐵uplog 2 �1+ ∣ℎ𝑢𝑢ul(𝑠𝑠)∣2

𝜎𝜎2
� 

(1) 
 
여기서 𝐵𝐵up = 10 MHz 는 전체 상향링크 대역폭을 

의미하며, 𝜂𝜂𝑢𝑢(𝑠𝑠) ∈ {0,1}는 주파수 분할 다중 접속(FDMA) 

환경에서 사용자 𝑢𝑢 에게 대역폭이 할당되었는지를 

나타내는 이진 변수이다. 

UAV 의 에너지 소비를 모델링하기 위해, 본 

연구에서는 [2]에서 제시된 Fixed-wing UAV 에 대한 

해석적 에너지 모델을 채택하였다. 𝑠𝑠번째 시간 단계에서 

UAV 의 위치와 속도는 각각 𝐮𝐮(𝑠𝑠) = (𝑥𝑥(𝑠𝑠), 𝑦𝑦(𝑠𝑠), 𝑧𝑧(𝑠𝑠))와 

𝐯𝐯(𝑠𝑠)로 표현되며, 이에 대한 운동학적 관계는 𝐮𝐮(𝑠𝑠 + 1) =
𝐮𝐮(𝑠𝑠) + 𝐯𝐯(𝑠𝑠)𝛿𝛿𝑡𝑡 + 1

2
𝝎𝝎(𝑠𝑠)𝛿𝛿𝑡𝑡

2 와 𝐯𝐯(𝑠𝑠 + 1) = 𝐯𝐯(𝑠𝑠) + 𝝎𝝎(𝑠𝑠)𝛿𝛿𝑡𝑡 로 

주어진다. 여기서 𝝎𝝎(𝑠𝑠)는 시간 슬롯 𝑠𝑠에서의 UAV 의 

가속도를 의미한다. Fixed-wing UAV 의 추진 전력은  

 

그림 1. 상향링크 UAV 시스템을 위한 제안된 DDPG 기반 

알고리즘 구조의 블록도. 

 

시간 슬롯 𝑠𝑠에서 𝑝̂𝑝(𝑠𝑠) = 𝑎𝑎  ∥ 𝐯𝐯(𝑠𝑠) ∥3+ 𝑏𝑏
∥𝐯𝐯(𝑠𝑠)∥

�1+ ∥𝝎𝝎(𝑠𝑠)∥2

𝑔𝑔2
�과 

같이 정의된다. 여기서 𝑔𝑔는 중력 가속도를 나타내며, 𝑎𝑎와 

𝑏𝑏는 각각 UAV 의 날개 면적, 기체 중량 및 공기 밀도와 

관련된 상수 파라미터이다. 이를 바탕으로 UAV 의 

이동에 따른 시간 슬롯 𝑠𝑠 에서의 에너지 소비는 

𝐸𝐸uavmov(𝑠𝑠) = (𝑝𝑝(𝑠𝑠) + 𝑝̂𝑝(𝑠𝑠))와 같이 모델링된다. 

본 연구의 목적은 𝑆𝑆개의 시간 단계에 동안 𝐾𝐾ul명의 

상향링크 사용자에 대해 최소 상향링크 전송률을 

최대화하는 동시에, UAV 의 이동 에너지를 최소화하는 

것이다. 이에 따라 최적화 문제를 다음과 같이 수립한다. 
 

max
𝜼𝜼,𝐮𝐮

∑ max
𝑢𝑢

 (𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠))𝑆𝑆
𝑠𝑠=1 −  𝜖𝜖0 ∑ 𝐸𝐸uavmov𝑆𝑆

𝑠𝑠=1        (2a) 

s. t. 0 ≤ ∑ 𝜂𝜂𝑢𝑢
𝐾𝐾ul
𝑢𝑢=1 (𝑠𝑠) ≤ 1, ∀𝑠𝑠 ∈ 𝑆𝑆, (2b) 

∥ 𝐮𝐮(𝑠𝑠) − 𝐮𝐮(𝑠𝑠 − 1) ∥≤ 𝐿𝐿max,   ∀𝑠𝑠 ∈ 𝒮𝒮,    (2c) 
ℎmin ≤ 𝑧𝑧uav(𝑠𝑠) ≤ ℎmax,∀𝑠𝑠 ∈ 𝑆𝑆.    (2d) 

 
여기서 스칼라 값 𝜖𝜖0은 상향링크 성능과 에너지 효율 

간의 절충을 조절하는 가중치이다. 제약식 (1b)는 대역폭 

예산을 보장하며, 제약식 (1c)는 시간 단계당 UAV 의 

이동 거리를 제한하고, 제약식 (1d)는 UAV 의 고도를 

허용 가능한 운용 범위 내로 제한한다. 

문제 (1)은 비선형성 및 연속적인 제어 변수를 

포함하는 비블록 최적화 문제이므로, 이를 해결하기 위해 

연속적인 행동 공간에 적합한 Model-free Off-policy 

Actor-critic 심층 강화학습 기법인 DDPG 알고리즘을 

적용하였다. DDPG는 그림 1과 같이 네 개의 신경망, 즉 



알고리즘 1. 제안된 DDPG 기반 알고리즘 

1: 초기화(Initialization): 

𝑄𝑄(𝐬𝐬𝑠𝑠, 𝐚𝐚𝑠𝑠,𝜃𝜃𝑞𝑞), 𝜇𝜇(𝐬𝐬𝑠𝑠, 𝐚𝐚𝑠𝑠,𝜃𝜃𝜇𝜇), 
𝑄𝑄′(𝐬𝐬𝑠𝑠, 𝐚𝐚𝑠𝑠 ,𝜃𝜃𝑞𝑞′), 𝜇𝜇′(𝐬𝐬𝑠𝑠, 𝐚𝐚𝑠𝑠,𝜃𝜃𝜇𝜇′)를 초기화 

이때 𝜃𝜃𝑞𝑞′ = 𝜃𝜃𝑞𝑞, 𝜃𝜃𝜇𝜇′ = 𝜃𝜃𝜇𝜇로 설정 

ℬ, 𝜖𝜖1, 𝜖𝜖2, 𝜉𝜉, 𝑁𝑁𝐵𝐵, epmax를 설정 

2: Episode 인덱스 ep ← 1, 시간 단계 𝑠𝑠 ← 1로 설정 

3: ep = 1부터 epmax까지 반복 

4:   시간 단계 0에서 UAV 위치 𝐮𝐮(0)를 설정 

5:   초기 상태 𝐬𝐬1을 설정 

6:   𝑠𝑠 = 1부터 𝑆𝑆까지 반복 

7:      𝐚𝐚𝑠𝑠 = 𝜇𝜇( 𝐬𝐬𝑠𝑠 ∣∣ 𝜃𝜃𝜇𝜇 ) + 𝒩𝒩𝑠𝑠 선택 

8:      𝐮𝐮(𝑠𝑠)와 𝜼𝜼(𝑠𝑠)를 추출 

9:      𝑅𝑅𝑢𝑢ul(𝑠𝑠)와 𝐸𝐸uavmov(𝑠𝑠)를 계산 

10:     다음 상태 𝐬𝐬𝑠𝑠+1를 설정 

11:     보상 𝑟𝑟𝑠𝑠를 계산 

12:     (𝐬𝐬𝑠𝑠, 𝐚𝐚𝑠𝑠 , 𝑟𝑟𝑠𝑠, 𝐬𝐬𝑠𝑠+1)를 ℬ에 저장 

13:     ℬ에서 𝑁𝑁𝐵𝐵만큼 무작위 샘플링 

14:     Update Evaluation Critic Network 

15:     Update Evaluation Actor Network 

16:     Update Target Networks 

17:  종료 

18: 종료 

 

Actor 𝜇𝜇, Target Actor 𝜇𝜇′, Critic 𝑄𝑄, Target Critic 𝑄𝑄′과 

이들에 대응하는 파라미터 𝜃𝜃𝜇𝜇,𝜃𝜃𝑞𝑞 ,𝜃𝜃𝜇𝜇′ ,𝜃𝜃𝑞𝑞′ 로 구성되며, 

결정론적 정책 경사 이론에 기반하여 경사 하강법을 

통해 학습된다[3]. DDPG 기반 최적화 절차는 알고리즘 

1 에 상세히 제시되어 있으며, 주요 Hyperparameter 는 

다음과 같다: Soft Update 계수 𝜏𝜏 = 0.005 , Learning 

Rates 𝜖𝜖1 = 0.001, 𝜖𝜖2 = 0.002, Discount Factor 𝜉𝜉 = 0.99, 

Replay Buffer Size 𝐵𝐵 = 106, Mini-batch Size 𝑁𝑁𝐵𝐵 = 256. 

각 시간 단계 𝑠𝑠에서 상태는 𝐬𝐬𝑠𝑠 = {𝐮𝐮(𝑠𝑠 − 1),𝐚𝐚ul, (𝑠𝑠 − 1)}로 

정의되며, 행동은 𝐚𝐚𝑠𝑠 = {𝐮𝐮(𝑠𝑠),𝜼𝜼(𝑠𝑠)} 로 구성된다. 보상 

함수는 𝑟𝑟𝑠𝑠 = min 
𝑢𝑢

(𝑅𝑅𝑢𝑢ul(𝑠𝑠)) − 𝜖𝜖0𝐸𝐸uavmov(𝑠𝑠)으로 정의되며, 이는 

상향링크 전송률과 UAV 에너지 소비 간의 균형을 

반영한다. Actor 및 Critic 신경망은 Replay Buffer 에서 

Sampling 된 Mini-batch 를 이용하여 반복적으로 

업데이트됨으로써 학습 안정성과 수렴 성능을 

향상시킨다. 

 

Ⅲ. 모의실험 결과  

제안된 강화학습 기반 접근법은 학습 초기 단계부터 

우수한 수렴 특성을 보이며, Episode 수가 증가함에 따라 

누적 보상이 점진적으로 증가한 후 안정적으로 수렴하는 

경향을 나타낸다. 특히 약 1,000 Episode 이내에 준최적 

수준의 누적 보상에 도달함으로써, 제안된 알고리즘이 

비교적 짧은 학습 시간 내에 효과적인 제어 정책을 

학습할 수 있음을 확인할 수 있다. 이러한 결과는 본 

논문에서 수립한 비볼록 최적화 문제를 해결하는 데 

있어 제안된 학습 기법이 높은 학습 효율성과 안전성을 

동시에 갖추고 있음을 시사한다. 

또한 가중 계수 𝜖𝜖0 는 상향링크 성능과 UAV 이동 

에너지 소비 간의 상충 관계를 조절하는 핵심 

파라미터로 작용한다. 그림 2 에서 확인할 수 있듯이, 

𝜖𝜖0값이 증가할수록 에너지 절감이 우선적으로 반영되어 

UAV의 이동 에너지 소비는 감소하는 반면, 상향링크  

 
그림 2. 가중 계수 𝜖𝜖₀  에 따른 상향링크 성능과 UAV 에너지 

소비 간의 Tradeoff. 

 

전송률을 포함한 통신 성능은 점진적으로 저하되는 

경향을 보인다. 이는 에너지 효율을 과도하게 강조할 

경우 통신 품질이 희생될 수 있음을 의미한다. 따라서 

시스템의 서비스 요구 사항과 운용 환경을 고려하여 

통신 성능과 에너지 효율 간의 적절한 절충을 달성할 수 

있도록 𝜖𝜖0를 신중하게 설정하는 것이 중요하다. 
 

Ⅳ. 결론  

본 연구에서는 상향링크 통신 성능과 UAV 의 이동 

에너지 소비를 공동으로 고려한 DRL 기반 최적화 

알고리즘을 제안하였다. 모의실험 결과를 통해 제안된 

알고리즘이 짧은 학습 시간 내에 안정적으로 수렴하며, 

통신 성능과 에너지 효율 간의 효과적인 절충을 달성할 

수 있음을 확인하였다. 향후 연구에서는 사용자 간 

간섭을 명시적으로 고려한 모델링, 다수의 UAV 가 

협력적으로 운용되는 시나리오, 그리고 보다 현실적인 

채널 및 에너지 모델을 포함하는 방향으로 본 연구를 

확장할 계획이다. 
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