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Abstract—This paper extends our previous work on hybrid
quantum-classical neural networks by redefining the role of
quantum circuits in image classification. A variational quantum
circuit is used as a feature enhancement module operating on
compact representations obtained through a learned bottleneck,
rather than replacing classical dense layers. The proposed
hybrid model demonstrates competitive performance compared
to classical CNN and quantum-only baselines while achieving
parameter efficiency on MNIST, Fashion-MNIST and CIFAR-
10. PCA-based feature analysis highlights the effectiveness of
quantum-enhanced feature representations and further illustrates
the scalability of the proposed architecture across all datasets.

Index Terms—Hybrid quantum-classical learning, quantum
machine learning, variational quantum circuits, feature
bottleneck, image classification

I. INTRODUCTION

Hybrid quantum-classical neural networks have emerged
as a practical approach for utilizing near-term quantum de-
vices in machine learning applications [1], [2]. Most prior
work has focused on improving expressivity or reducing
model parameters by replacing classical neural components
with quantum circuits [3], [4]. However, replacement-based
quantum architectures often suffer from limited scalability on
complex visual datasets [3], [4].

To address these limitations, we extend our previous
work by redefining quantum circuits as feature enhancement
modules operating on compact classical representations rather
than as direct replacements for classical layers [5], [6].
The proposed approach is evaluated on MNIST, Fashion-
MNIST and CIFAR-10 datasets [7] to assess scalability and
performance against classical and quantum-only baselines.

The main contributions of this paper are summarized as
follows:

• A hybrid quantum-classical image classification
architecture that employs quantum circuits as feature
enhancement modules with a learned bottleneck.

• Experimental validation on MNIST, Fashion-MNIST and
CIFAR-10 demonstrating competitive performance with
improved parameter efficiency.

II. PROPOSED METHODOLOGY

A. Overall Architecture

The proposed hybrid architecture consists of four main
stages:

1) Classical feature extraction,

Fig. 1: CNN–quantum hybrid architecture for image
classification

2) Feature bottleneck projection,
3) Quantum feature transformation and
4) Classification

Unlike our previous architecture, where quantum layers
directly replaced classical dense layers, the proposed approach
maintains classical feature hierarchies and applies quantum
processing only after dimensionality reduction. An overview
of the architecture is illustrated in Fig. 1.

B. Classical Feature Extraction

Given an input image x ∈ RH×W×C , a lightweight
convolutional neural network extracts intermediate
representations:

h = fCNN(x), h ∈ Rd

The CNN captures spatial and local patterns essential for
image classification, particularly for complex datasets such as
CIFAR-10.

C. Feature Bottleneck Projection

To interface with a limited number of qubits, the extracted
features are compressed through a learned bottleneck:

z = ϕ(Wbh+ bb) , z ∈ Rnq

Here, nq denotes the number of qubits and ϕ(·) represents
a nonlinear activation function. This bottleneck reduces
the feature dimensionality while preserving discriminative
information.

D. Quantum Feature Transformation

The bottleneck features are encoded into a variational
quantum circuit using a data re-uploading strategy [6], [8].
In this work, the circuit consists of nq qubits and L layers of
parameterized entangling operations.

|ψ(z,θ)⟩ =
L∏

l=1

Uent(θl)Uenc(z) |0⟩ ,
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Fig. 2: PCA visualization of learned feature representations for (a) MNIST, (b) Fashion-MNIST, and (c) CIFAR-10.

where Uenc(·) denotes angle encoding of the classical
features and Uent(θl) represents parameterized entangling
operations at layer l [9]. The circuit outputs expectation values
given by:

qi = ⟨ψ|Zi|ψ⟩,

which together form the quantum-enhanced feature vector q.

E. Classification

The quantum-transformed features are passed to a classical
classifier:

ŷ = softmax(Wcq+ bc)

This separation of responsibilities enables the quantum circuit
to act as a feature enhancement module rather than a full
classifier replacement.

III. RESULT ANALYSIS AND PERFORMANCE EVALUATION

A. Experimental Setup

Experiments are conducted on MNIST, Fashion-MNIST
and CIFAR-10 using the same training settings for all
models. Performance is evaluated using test accuracy, which is
suitable given the balanced datasets. The number of trainable
parameters is also reported to assess model efficiency.

B. Quantitative Results
TABLE I: Test Accuracy (%) and Model Size.

Model #Params (MNIST/Fashion-MNIST) #Params (CIFAR-10) MNIST Fashion-MNIST CIFAR-10
CNN 105.9K 38.6K 98.78% 91.53% 66.70%
Hybrid 55.4K 21.9K 98.10% 90.72% 57.68%
Quantum-only 6.4K – 76.85% 77.45% –

Table I summarizes the test accuracy and parameter size
of the evaluated models. The proposed hybrid architecture
achieves competitive accuracy with fewer parameters than
the classical CNN. As dataset complexity increases, the
advantages of the hybrid approach become more apparent.
Quantum-only models are excluded from the CIFAR-10
evaluation due to limited qubit capacity.

C. Feature Space Analysis

PCA is applied to visualize the learned feature
representations of the hybrid model, as shown in Fig.
2. MNIST and Fashion-MNIST show distinct class separation
while CIFAR-10 shows more complex yet structured
distributions, indicating the scalability of the proposed
approach.

IV. CONCLUSION & FUTURE WORK

This paper proposes a hybrid quantum-classical image
classification framework that uses quantum circuits as
feature enhancement modules operating on compact classical
representations. Experimental results show that the proposed
approach achieves competitive performance while improving
parameter efficiency across several benchmark datasets. These
results highlight how hybrid architectures balance scalability
and expressiveness under near-term quantum constraints.
Future work will explore deeper quantum circuits, alternative
encoding strategies and deployment on real quantum hardware.
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