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Improving Geometric Processing with Plane—aware Perturbation Uncertainty
and Inference—time Control for Monocular Depth Estimation
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Figure 1. PSU(plane-aware) visualization
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2.3.1 PSU 7|¥t A"3 <A sM(uncertainty-guided
selective refinement)
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Figure 2. Plane residual result (Raw v PSU-guided PointFilter)
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Table 1. Quantitative comparison
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Method Planarity | Inlier ratio Normal instability |
Raw 0.2353 + 0.1479 0.2730 + 0.1039 0.2261 + 0.0752
PointFilter 0.1915 + 0.1815 0.3690 + 0.1586 -

Refined 0.2268 + 0.1503 0.2729 + 0.1038 0.2229 + 0.0757
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