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요 약

본 논문에서는 모바일 밀리미터파(mmWave) 통신 환경을 모방한 Digital Twin에서 재구성한 채널을 활용하여 머신러닝
기반 빔 추적 알고리즘을 제안한다. 최근 머신러닝 기반 빔 추적 기법은 빔 탐색 빈도와 공간을 줄이는 대안으로 부상하고
있으나, 학습에 필요한 대규모 데이터 수집은 현실 시스템에서 제약이 크다. 이러한 점을 극복하기 위하여 3D 정보 기반
site-specific 채널을 생성하는 AODT (aerial omniverse digital twin)를 통하여 학습 데이터를 생성하고, 이를 빔 추적 모델
학습에 활용한다. 시뮬레이션을 통하여 실제 한양대 캠퍼스 환경을 AODT 상에 구현하고 채널 데이터를 수집한다. 실험
결과, 머신러닝 기반 빔 추적 알고리즘은 AODT 상의 채널로 학습하여도 일관된 빔 추적 성능을 보인다.

Ⅰ. 서론

밀리미터파(mmWave) 통신 시스템은 높은 빔포밍 이득을
제공하지만, 좁아진 빔 폭으로 인해 모바일 환경에서 정밀한
빔 추적이 필수적이다 [1]. 최근 머신러닝 기반 빔 추적
기법이 등장하였으나 학습을 위한 대규모 채널 데이터 수집은
현실에서 한계가 있다 [2]. 이를 극복하기 위해, 실제 환경의
3D 정보 기반 site-specific 채널을 생성하는 DT (digital
twin)를 활용하여 데이터를 수집하고 모델을 학습시킨 후,
현실 환경에 적용하거나 소량의 현실 데이터로 모델 불일치를
보정하는 DT-aided 연구가 활발히 진행 중이다 [3], [4]. 본
논문에서는 NVIDIA AODT (aerial omniverse digital
twin)에서 얻은 데이터로 재구성한 채널을 활용한 머신러닝
기반 빔 추적 알고리즘을 제안하며, 이동체의 도래각 변화를
연속적으로 추적하고 성능을 비교한다.

Ⅱ. 시스템 모델

본 논문은 하나의 모바일 단말기에서 개의 배열 안테나
구조를 가진 기지국으로 통신하는 SIMO 상향링크 채널
상황을 고려한다. 단말기와 기지국은 그림 1과 같이 3차원
AODT 상에 위치한다. 한 사건은 타임 슬롯 개로 이루어져
있으며 각 타임 슬롯의 길이는 이다. 는 파일럿 신호와
데이터 전송 파트로 구분되어 있고, 번째 타임 슬롯에서
단말기가 송신하는 파일럿 신호는 ∈ ×  ,  로
표현할 수 있다. 도래각 는 다음과 같이 계산한다.

  tan 
  (1)

기지국이 수신하는 신호는 z∈ × 는 다음과 같다.

z  h  n  (2)

수식 (2)에서, AODT 상에서의 기지국과 단말기 사이의
채널 벡터 h∈ × 는 다음과 같이 표현한다.

h  re   im    (3)

수식 (3)에서, re 과 im  는 AODT에서 얻은 번째 타임

그림 1 AODT에서 구현한 한양대 캠퍼스

슬롯의 채널 주파수 응답 데이터의 실수부와 허수부이다.
AWGN (additive white gaussian noise) n∈ × 은n ∼  의 분포를 따른다. 잡음 분산 는 다음과

같이 계산한다.

  B∆f  (4)

수식 (4)에서, B는 Boltzmann 상수이고 는 Kelvin 온도,∆f는 서브 캐리어 간격, F는 단말기의 잡음 형상이다.

Ⅲ. 머신러닝 기반 빔 추적 알고리즘

본 논문의 빔 추적 알고리즘은 4D-CNN 모델을
채택하였다. 알고리즘의 입력 X 은 AODT 상에서 수집한번째 타임에서의 수신 신호 z와 기지국의 배열 안테나에

형성되는 위상 변화 결합을 반영한 빔포밍 벡터 w를
활용한다. 빔포밍 벡터 w∈  × 와 빔포밍 각 는 다음과
같다.

w   a  (5)

a는 배열 응답 벡터로 반파장 간격 안테나에서 다음과
같이 정의한다.

a       cos⋯     cos  T  (6)



따라서 각 에피소드 에 대한 3차원 입력 X  ∈  ×  × 는
수신 신호 z와 빔포밍 벡터 w의 실수부와 허수부로
정한다. X       Rez  Imz   X       Rew  Imw    (7)

입력단에서 크기가 2인 첫 번째 차원은 입력 벡터 z , w에
대응하는 2개의 특징 맵 (feature map)을 의미하며, 마지막
차원은 특징 맵의 복소수 성분을 실수부와 허수부로 분리한
채널을 의미한다. 알고리즘의 출력  는 도래각의

변화량이다. CNN 모델은 X 를 입력으로 받아 회귀 출력    X i ∈을 산출한다. 여기서 는 모델의 신경망
파라미터를 나타낸다.          (8)

정답 레이블 는 번째 사건에서  ,   번째 도래각 과    의 차이를 나타낸다. 지도학습 기반의 머신러닝
알고리즘은 예측값  와 정답 레이블  사이의 평균 제곱

오차를 최소화하도록 파라미터를 업데이트한다. 머신러닝의
학습 목적함수 는 다음과 같다.

     
  X i   (9)

학습은 미니 배치 기반의 경사 하강법으로 수행하며, 배치
단위 손실을 이용하여 를 반복적으로 갱신한다.

Ⅳ. 시뮬레이션 결과

본 논문에서는 안테나 개수가 8개인 기지국에서 실제
도래각과 머신러닝 알고리즘이 추정한 각의 오차를 비교한다.
AODT 환경에서, 매 사건의 이동체는 최대 20m/s의 속도를
가지고, x 좌표 [-50m, 50m], y 좌표 [0m, 120m] 범위 내
무작위 위치에서 이동성 모델에 따라 움직인다. 기지국은
[0m, 0m]에 위치하고. 이동체는 기지국에서 최소 거리m in  m를 유지하도록 설정한다. AODT에서 1000번의
사건 동안 타임 슬롯별 알고리즘이 추적한 도래각과 실제
도래각을 비교하고, 추정값과 실제값의 RMSE (root mean
square error) 오차를 계산하여 빔 추적 성능을 평가한다.
시뮬레이션과 머신러닝의 파라미터는 표1과 같다.

Parameter Value
기지국 안테나 원소 개수  
타임 슬롯 간격 ∆ [ms]

epoch 
batch size 
learning rate  ×  
episode 

user transmit power [dBm]
Kelvin 온도  [K]

Boltzmann 상수 B  ×  [J/K]
중심 주파수 [GHz]

서브 캐리어 간격 ∆f [kHz]
noise 형상  [dBm]

표 1 시뮬레이션 환경 및 머신러닝 파라미터

그림 2 AODT 환경에서 알고리즘의 빔 추적 RMSE

그림 2는 사건 1000번에 대한 AODT 빔 추적 시뮬레이션
환경에서 타임 슬롯 별로 알고리즘이 추정한 도래각과 실제
도래각의 RMSE 오차 평균을 계산하여 알고리즘의 성능을
확인한다. 시뮬레이션 결과 AODT 환경에서, 제안하는 빔
추적 알고리즘은 100번의 타임 슬롯 동안 평균 1도 이하의
RMSE 오차가 발생하는 것을 확인하였다.

Ⅴ. 결론

본 논문에서는 이동체와 기지국 사이의 상향링크 SIMO
채널 환경을 AODT 상에서 구현하여, 실시간으로 빔을
추적하는 머신러닝 기반 알고리즘을 제안한다. 실험 결과
AODT 환경에서 beam sweeping 기법과 비교하였을 때,
제안하는 알고리즘은 DT에서 얻은 합성 채널을 활용하여도
1도 이하의 안정적인 빔 추적 성능을 유지하며 우수한 성능을
보인다는 것을 확인하였다.
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