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요 약

철도 차륜 유지보수는 운행 안정과 직결되지만, 기존 측정 방식은 차륜 분해 및 수동 검사를 전제로 하여 작업 부담이 크고 시간, 비용 측면에서
비효율적이다. 본 논문에서는차륜 프로파일을 비접촉으로 정밀 측정을 위한 자유형마모측정 로봇 시스템을 설계하고그 성능을 실증한다. 제안 시스
템은 환경 스캔-차륜검출-시각 정렬 RRT* 기반 경로 계획을 통해 측정 위치로 자율 접근한다. 또한 차륜 윤곽의 정밀 복원을위해 2단계로 이루어진
딥러닝 파이프라인을 구성하였다. 1단계에서는 YOLOv8을 이용해 차륜 관심 영역 (ROI)를 검출하고, 2단계에서는 곡률 기반 중요도 샘플링을 적용한
변형 기반 모델로윤곽을재구성한다. 더불어 카메라관측각에 따른 원근 왜곡을 최소화하기 위해, 차륜 프로파일의접선 벡터를분석하여 왜곡이가장
작은프레임을자동선택하는최적뷰선정알고리즘을제안한다. 실험 결과, 차륜 검출 성능은 mAP 99.5%, 윤곽 복원성능은 IoU 95.5%를 달성하였으
며, 이를 통해 차량 기지 검수 환경에서 비접촉식 자동 계측을 통한 로봇 기반 유지보수 절차로의 적용 가능성을 확인하였다.

Ⅰ. 서 론

차륜 프로파일 마모도는 주행 안정성과 유지보수 주기 결정에 직결되

는핵심 지표지만, 현장에서는차륜 분해및전용장비 기반의측정이일

반적이기때문에작업인력, 시간, 비용 부담이크다. 따라서차량을분해

하지 않고도 현장에서 신속하고 반복 가능하게 계측할 수 있는 비접촉

자동화 방식의 도입이 요구된다.

영상 기반 비접촉 계측은 신속하고 반복 가능한 측정이 가능하나, 시점

변화에따른원근왜곡, 차체 하부환경의가림및조명,반사 변화로인해

유지보수 수준의 정밀도 확보가 어렵다. 특히 관측 각도에 따라 동일 차

륜이라도 프로파일이 다르게 나타날 수 있어, 정확한 계측을 위해 어느

시점에서 측정할 것인지가 성능을 좌우한다.

본 연구는 이러한 시점 의존성을 핵심 과제로 설정하고, 다양한 관찰 각

도에서 획득한데이터 중왜곡이최소화되는관측프레임을자동으로 선

택하는 방법을 제안한다.

Ⅱ. 본 론

2.1 시스템 구성

본 절에서는 제안 시스템의 구현 및 실험 환경을 기술한다. 전체 시스

템은 로봇 플랫폼(인지·주행·조작)과 고성능 연산을 담당하는 Remote

PC로 구성되며, 두 장치는 Ubuntu-22.04, Python 3.10, ROS2 Humble

기반으로 통신 및 실행 환경을 통일하였다. 그림 1은 자율주행 플랫폼

(Scout Mini), 주연산장치(NVIDIA Jetson Orin AGX), 6-DOF 로봇 팔

(Piper Arm) 그리고 3대의 RGB-D 센서(Intel RealSense D435i 2대 +

OAK-D S2 1대)로 구성되는 로봇 플랫폼이다.

전체 시스템은 인지, 모션 제어를 수행하는 로봇 플랫폼과 고성능 연산

을 담당하는Remote PC로 나눠 구성하였으며, 두 장치는 안정적인 통신

과 개발 환경의 일관성을 확보하기 위해 Ubuntu-22.04, Python 3.10,

ROS2 Humble을 사용하였다. RealSense은 주변 환경 인지 및 탐색을,

OAK-D은 차륜 프로파일 획득을 위한 정밀 센서로 활용된다.

* indicates equal contributions.

그림 1. 비접촉 차륜 프로파일 측정을 위한 제안 로봇 플랫폼

2.2 자율 Motion Planning

본 절에서는로봇이차륜마모 측정에적합한관찰위치에 자율적으로

도달하기 위한 인지 및 목표 설정, 경로 계획의 전체 절차를 기술한다.

전체 프로세스는 3D 환경인지와 이를 기반으로 한 RRT 경로 계획 및
제어의 통합 흐름으로 구성된다.

2.2.1 3D 환경 인지 및 목표 설정

로봇은 RGB-D 센서로부터 RGB 영상과 깊이 정보를 취득한 후,

Depth-RGB 정합과카메라내부 파라미터기반 3차원투영을 통해차륜

주변의 장애물 분포를 포함하는 3D point cloud를 생성한다. 이와 동시

에 로봇은 카메라를 좌·우·상 방향으로 회전시키며 환경을 스캔하고, 휠

의 Bounding Box가 1초 이상 지속 탐지될 경우 해당 위치를 목표 지점

으로 확정한다. 생성된 3D point cloud는 경로계획및 제어단계에서 장

애물 회피및 안전한접근경로설정을위한 공간구조 정보로활용된다.

2.2.2 RRT기반 경로 계획 및 근접 제어
탐지된 목표 좌표를 바탕으로 로봇은 복잡한 하부 구조물과의 충돌을

피하기위해 RRT기반 샘플링경로 계획을수행한다. 환경 변화나 예기
치 못한 장애물로 인해 초기 경로가 유효하지 않거나 목표 도달에 실패

할 경우, 실시간재계획을수행하여시스템의 강건성을 확보한다. 최종적

으로 계획된 경로를 따라 이동하며, 측정 위치 인근에서는 추가 정렬 및

근접 보정을 수행하여 최종 관측 포즈를 확보하도록 제어된다.
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그림 2. 최적 관측 뷰 선정 결과 예시. [(i)가 가장 작은 프레임, (ii)가 최소인 최적 뷰 프레임, (iii)가 가장 큰 프레임]
2.3 최적 관측 뷰 선정

카메라 시점 변화에 따른 원근 왜곡은 2D 이미지에서 휠 외곽선 형상

을 변형시켜 딥러닝 기반 마모도 추정의 정확도를 저해한다. 본 연구에

서는시퀀스 내 접선 각 변화율이 최소인 프레임을 정면관측 뷰로 정의

하고, 이를 최적 뷰로 선택하는 알고리즘을 제안한다.

2.3.1 휠 외곽선 탐지 모듈

기존 전통적 엣지 추출 기법은 반사·조명 변화·질감 차이에 취약하므

로, 본 연구에서는 환경 변화에 강건한 2-stage 딥러닝 파이프라인을 구

성하였다. 1단계에서는 YOLOv8을 이용해 차륜 ROI를 추출하고, 2단계

에서는 ROI 내부에서 초기윤곽을 변형시키며 차륜 외곽선을정밀 복원

하는변형기반모델을적용한다. 특히 마모로인한미세형상변화를효

과적으로 학습하기 위해 곡률이 큰 구간에 더 높은 밀도의 포인트를 배

치하는 곡률 기반 중요도 샘플링을 적용하였다. 실험 결과, 제안 모델은

평균 IoU 95.5%를 달성하여 정밀한 형상 복원의 가능성을 확인하였다.

2.3.2 접선 기반 최적 뷰 선정 알고리즘

각 프레임 에서 2-stage 파이프라인으로 복원된 외곽선점 집합에서
우측 프로파일 를 구성하기 위해, 좌표 상위 분위수에 해당하는 우
측 후보군을 추출한 뒤 축방향으로 binning하여 각 bin에서 최대 를
갖는점을대표점으로 선택한다. 이후 에 TLS 기반 직선피팅을 적용
하여 접선 방향 벡터    ⊤를 산출하고, 대표 접선 각을

  mod로 정의한다.
카메라가 정면에 위치할수록 관측 위치 변화가 우측 프로파일 기하에

미치는 영향이 최소화되어 가 완만하게 변화한다. 이에 본 연구는 접
선각의 시간 변화율을 정면 근접도의 지표로 정의하고, 잡음이 완화된

각도열 로부터변화율   
  을 계산한다. 최종적으로

가 최소가 되는  arg min을 최적 뷰 프레임으로 선정한다.
2.3.2 실험 및 결과

제안한 최적 뷰 선정 알고리즘의 동작을 검증하기 위해, 다수의 차륜

이미지시퀀스를입력으로사용하여각프레임의접선각도 와변화율를산출하고 최적프레임 를 자동 선택하였다. 그림 2는 시퀀스에서
프레임별 접선각 와 변화율 을 제시하고,  최소, 최대 프
레임과 최소 (최적 뷰) 프레임을 함께 비교한다.
실험 결과, 가 최소가 되는 프레임은 카메라가 차륜 단면에 대해 정
면에 근접한 관측 조건에 해당하며, 이때 외곽선의 원근 왜곡과 가림 영

향이 상대적으로 작아 윤곽 복원의 안정성이 최대화됨을 확인하였다.

Ⅲ. 결 론

본 연구는 딥러닝 기반 비전 기술과 자율주행 로봇을 결합하여, 차륜

을 분해하지 않고 비접촉으로 마모도를 측정하는 시스템을 제안하였다.

로봇은 RRT* 기반 모션플래닝과비전정렬을통해복잡한하부환경에

서도 충돌없이 목표 위치에 정밀 접근한다.

또한 YOLOv8 기반 ROI 검출과 형상 변형 네트워크를 결합한 2단계

파이프라인으로 차륜 윤곽을 정밀 복원하여 평균 IoU95.5%를 달성하였

다. 아울러 접선 대칭성 분석을 이용한 최적 뷰 선정 알고리즘으로 원근

왜곡을 최소화해 측정 일관성을 향상시켰다. 향후에는실제 정비창 실증

과 프로파일 기반 마모량 정량 산출 알고리즘을 통합할 예정이다.
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