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요 약

기계 학습은 자율 주행과 같은 스마트시티의 지능형 서비스를 가능하게 하였으며, 이러한 서비스를 지원하기 위해 통신 효율적인
분산 학습 패러다임인 UAV(Unmanned Aerial Vehicle) 기반 연합 학습(federated learning, FL)이 활용되고 있다. 그러나
IoT(Internet of Things) 사용자의 이동성과 이질적인 로컬 학습 시간으로 인해 통신 및 비행 지연 시간을 최소화하는 UAV 경로를
결정하는 것은 여전히 도전적인 문제이다. 본 논문에서는 IoT 사용자의 이동성을 고려하여 다중 UAV의 경로를 최적화하는 다중
에이전트강화학습(multi-agent reinforcement learning, MARL) 기반 FL 시스템을제안한다. 제안하는시스템은다중 UAV의 상호
작용을 통해 협력적으로 경로를 학습하고, 동적인 환경 변화에 효과적으로 대응할 수 있다.

Ⅰ. 서 론

기계 학습의 발전은 자율 주행 및 지능형 로봇과 같은 다양한 지능형

서비스를 가능하게 하였으나, 기존의 중앙 집중식 학습 방식은 통신 혼잡

과 개인정보 보호 문제를 유발할 수 있다. 이러한 한계를 완화하기 위해

제안된 연합 학습(federated learning, FL)은 IoT(Internet of Things) 사

용자가 로컬 모델을 학습하고, 원시 데이터(raw data) 대신 로컬 모델의

파라미터만을 기지국(base station, BS)과 같은 중앙 서버와 교환하는 분

산 학습 패러다임이다 [1]-[2].

그러나, 스마트시티에서는 BS의 제한된 통신자원과장애물로인해 모

든 IoT 사용자를 충분히 지원하기 어려우며, 방대한 수의 IoT 사용자로

인해 BS가 과부화될 수 있다. 이를 해결하기 위해, IoT 사용자에

line-of-sight 통신을 제공함으로써 네트워크 연결성을 향상시키는

UAV(Unmanned Aerial Vehicle) 기반 FL이 활발히 연구되고 있다

[3]-[4].

한편, IoT 사용자의 이동성과 이에 따른 채널 조건의 불확실성은 통신

지연을 유발한다. 또한 이질적인 로컬 데이터 크기 및 IoT 사용자까지의

UAV 비행 시간으로 인해 업데이트된 로컬 파라미터를 적시에 수집하지

못함으로써 FL 학습에 필요한 지연 시간이 증가할 수 있다 [5]. 따라서

IoT 사용자의 이동성과 통신 환경 변화를 실시간으로 반영할 수 있는 분

산 의사결정 방식이 요구된다.

본 논문은 IoT 사용자의 이동성과 로컬 데이터의 크기에따른통신 및

비행지연을 고려하여협력적으로 다중 UAV의 경로를 결정하는 다중에

이전트 강화학습(multi-agent reinforcement learning, MARL) 기반

UAV 경로 최적화 시스템을 제안한다.

Ⅱ. 본 론

본 논문에서 제안하는 시스템은 서비스 영역 내에 무작위로 분포하여

임의의 방향과속도로 이동하는  명의 IoT 사용자 (∈I ), 이들의 로컬
파라미터를 수집하는  대의 UAV (∈U ), 그리고 수집된 정보를 취
합하여 전역 모델 업데이트를 수행하는 1개의 BS로 구성된다. 각 IoT 사

용자는 고유한 데이터 크기와 컴퓨팅 자원을 보유하고 있으며, 이를 바탕

으로 개별적인 로컬 학습을 수행한다. UAV는 일정한 고도에서 비행하며

IoT 사용자의학습완료시점에맞춰경로를조정하고 IoT 사용자의로컬

모델 파라미터를 BS로 중계(relay)하는 역할을 한다.

다중 UAV 환경에서의 경로 최적화 문제는 여러 UAV가 IoT 사용자

로부터 로컬 모델 파라미터를 수집하여 BS로 중계하는 동일한 태스크를

수행하면서도 UAV 간의 위치, 비행 경로에 따라 서로의 성능에 영향을

미치는협력적의사결정문제이다. 특히 각 UAV는 제한된비행에너지를

가지며, 충돌 회피 및 커버리지의 중복을 방지하기 위해 다른 UAV의 행

그림 1. 시스템 구성



동을 고려한 경로 결정을 수행해야 한다. 이러한 문제를 해결하기 위해선

단일에이전트 강화학습 기반의 중앙 집중식 의사결정 방식보다 각 UAV

가 독립적으로 행동하면서도 공동의 목표를 달성하는 MARL 기술이 적

합하다 [6]. 또한, 다중 UAV는 전체 FL 지연 시간을 최소화하는 동일한

목적을 공유하고 공통의 보상 구조를 갖기 때문에, MARL을 통해 UAV

간 협력을 유도함으로써 최적의 경로 계획이 가능하다.

제안하는 MARL 기반 UAV 경로 최적화 시스템은 중앙 집중 학습–

분산 실행(Centralized Training and Decentralized Execution, CTDE)

구조를 따른다. 학습 단계에서는 BS가 전역 정보를 활용하여 MARL 모

델을중앙에서 학습하며, 실행단계에서는 각 UAV가 로컬관측정보만을

이용하여 독립적으로 경로 결정을 수행한다. 이러한 구조 하에서, 시스템

은 FL의 각 iteration 마다 다음과 같은 절차로 동작한다.

1. BS는 모든 UAV로부터 각자의 현재 위치 정보를 수집하며, 동시에 각

UAV가 서비스 하는모든 IoT 사용자의 로컬데이터셋의크기, 그리고

단위데이터샘플을처리하는데필요한 CPU cycle 수를 요청한다. BS

는 수집한 정보를 바탕으로 각 IoT 사용자의 연산 자원과 데이터 규모

를 고려하여예상 로컬 모델학습시간 train 을 계산한다. 이후 BS
는 계산된 예상 로컬 모델 학습 시간과 IoT 사용자의 위치 정보, 그리

고 각 UAV의 위치 정보를 모든 UAV에게 전송한다.

2. 각 UAV는 BS로부터 공유받은 타 UAV들의 위치 정보를 바탕으로 상

대적 거리를 파악하며, 비행 중 발생할 수 있는 잠재적 충돌 가능성을

경로 계획에 반영함으로써 최종적인 비행 지연 시간 fly을 추정한
다.

3. 각 UAV는 추정된 IoT 사용자별 로컬 학습 시간 
train과 자신의 비

행 시간 fly을 기반으로 IoT 사용자가 로컬 학습을 마치고 로컬 모
델 파라미터 전송을 시작하는 시점에서의 위치를 예측한다. 이후 각

UAV는 예측 정보를 기반으로 다음 iteration에서의 자신의 최적 위치를 MARL 정책에 따라 독립적으로 결정한다.
4.. UAV가 결정된목적지 로이동하여 IoT 사용자의로컬모델파라미
터를 수집하여 BS로 전달한다. BS는 소요된 비행 시간과 통신시간을

포함한 총 지연 시간을 측정하여 각 UAV 에이전트에게 총 지연 시간

에 반비례하는 보상을 부여하고 상태, 행동, 보상을 버퍼에 저장한다.

5.. BS는 모든 UAV로부터 수집된 IoT 사용자의 로컬 모델 파라미터를

가중 평균하여 전역 모델을 업데이트한다. 동시에 버퍼에서 미니 배치

(mini-batch)를 샘플링하여 MARL 모델의 파라미터를 업데이트한다.

업데이트된 전역 FL 모델과 MARL 모델을 다음 FL iteration이 시작

될 때 각각 모든 IoT 사용자와 모든 UAV에게 배포된다.

6. 전역 FL 모델의 손실 함수가 목표 임계치 이하로 수렴하거나 최대 학

습 iteration에 도달하여 종료 조건이 충족되면, BS는 최종 업데이트된

전역 모델을 모든 IoT 사용자에게 전송하고 학습 프로세스를 종료한

다.

제안된 MARL 기반 시스템은 IoT 사용자 이동성과 네트워크 환경 변

화에 실시간으로 대응하도록 설계되었다. 이를 위해 다중 UAV의 협력적

경로 결정과정에 FL 환경에서 발생하는 통신및 UAV 비행 지연시간을

구조적으로 반영한다. 이러한 구조는 반복적인 상호작용을 통해 UAV의

경로결정전략의효과를점진적으로축적할수있도록하며, 이를 바탕으

로 변화하는 환경에 대해 보다 신속하고 적응적인 경로 결정을 지원하는

기반을 제공한다.

Ⅲ. 결 론

본 논문에서는 IoT 사용자의이동성과 로컬데이터의 크기에 따른통

신및비행지연을고려하여다중 UAV의 경로를결정하는 UAV 경로최

적화 시스템을 제안하였다. 제안된 시스템은 동적인 네트워크 환경에서

MARL을 활용하여 UAV 간 협력을 구성하고 최적의 UAV 경로를 결정

한다. 이를 통해 FL 환경에서 다중 UAV 경로 최적화 문제를 다룰 수 있

는 이론적 기반을 제시한다.
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