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요 약
본 연구는 다수·다기종 무인 플랫폼(HMRS)의 효율적인 통합 운용을 위해, 피지컬 AI 기반의 계층적 제어 아키텍처를제안한다. 기존의 제어

방식은 플랫폼의 이기종성으로 인해 제어 복잡도가 높고 확장이 제한적이라는 한계를 가진다. 이를 해결하기 위해 본 연구는 '전술 판단'과 '물리적
실행'을 구조적으로 분리하고, 이를 '행동 추상화(Action Abstraction)' 계층으로 연결하여 상위 전술 명령을 기종별 구체적 행동으로 자동 변환하는
시스템을 설계하였다. 제안된 아키텍처는 하드웨어 변경 시에도 소프트웨어의 전면 수정 없이 유연한 확장이 가능하며, MLOps 파이프라인의 통합을

통해 비정형 환경에서도 지속 가능한 운용성을 보장한다.

Ⅰ. 서 론

최근 로보틱스 연구는 단일 고성능 로봇 개발을 넘어, 공중(UAV)·지상

(UGV)·해상(USV) 등 다양한 무인 플랫폼을 하나의 유기적인 체계로 통

합하는 이기종 다중 로봇 시스템(Heterogeneous Multi-Robot Systems,

HMRS)으로 진화하고 있다[1]. 특히 현대전 및 대규모 재난 현장에서는

저비용의 다수 무인 플랫폼을 활용하여, 일부가 소실되더라도 전체 시스

템의 임무수행능력을 유지하는 유연한군집운용이 핵심 경쟁력으로부

상했다[2].

그러나 플랫폼의 종류와수가 증가함에 따라, 기존의 '1인 1기' 원격 제어

나 단순 태스크 할당(Task Allocation) 방식은 한계에 직면했다[3]. 이기

종 플랫폼간의상이한 통신 프로토콜과제어방식은 시스템의 통합 복잡

도를 기하급수적으로 증가시키며, 새로운 기종 추가 시 전체 시스템을 재

설계해야 하는 확장성(Scalability) 문제를 야기한다[4].

이에 본 연구는 거대언어모델(LLM)과 같은 피지컬 AI 기술을 응용하여

[5], 시스템의 '두뇌(판단)'와 '몸통(실행)'을 구조적으로 분리하는계층적

아키텍처를제안한다. 기존의 Google SayCan과 같은 연구가단일 로봇의

행동 생성에 집중했다면[6], 본 연구는 이를 다기종 시스템으로 확장하여

**'행동 추상화(Action Abstraction)'**를 통해 이기종 간의물리적장벽

을 소프트웨어적으로 극복하는 데 목적이 있다.

2. 관련 연구

2.1 이기종 무인 체계의 군집 운용 및 소프트웨어 정의 전장

전통적인 무인 체계 연구가 고성능 단일 플랫폼의 자율성 향상에 집중했

다면, 최근의 국방 및 로보틱스 트렌드는 저비용·다수·다기종 플랫폼

(HMRS)의 유기적인 통합 운용으로 패러다임이 전환되고 있다[1]. 특히

미 국방부의 '레플리케이터(Replicator)' 프로젝트는 수천 대의 자율무인

체계를 신속하게 생산 및 배치하여, 일부 자산이 소실되더라도 전체 시스

템의 지능과 작전 능력이 유지되는 유연한 전력 구성을 목표로 한다.

이러한물량 중심의하드웨어운용을가능하게 하는핵심은소프트웨어에

있다. 기존의 중앙집중식제어는단일 실패지점(Single Point of Failure)

문제와 통신 대역폭의 한계로 대규모 확장에 취약하다[2, 3]. 이에 대응하

여 안두릴(Anduril)의 '라티스(Lattice)'와 같은 시스템은 개별 로봇의 세

부 제어보다는, 임무 단위의 지휘를 통해 이기종 플랫폼들이 자율적으로

역할을분담하고협업하는 통합운영체계를제시하고있다. 중국의 '늑대

로봇' 사례 또한 정찰-타격-보급 로봇이 군집을 이루어 유기적으로 협동

함으로써, 실전 환경에서 인명 피해를 최소화하고 효율성을 극대화하는

군집 로봇 기술의 실증 사례를 보여준다.

2.2 피지컬 AI와 거대언어모델(LLM)의 로보틱스 적용

복잡한 비정형 환경에서 다수 로봇을 제어하기 위해서는 단순한 규칙 기

반(Rule-based) 로직을 넘어선 고도의 상황 인지 능력이 요구된다. 최근

거대언어모델(LLM)과 멀티모달 AI를 포함한 피지컬 AI(Physical AI) 기

술은 로봇이 자연어 명령을 이해하고 상황의 맥락(Context)을 파악하여

다음 행동을 능동적으로 추론하는 능력을 제공한다.

Google의 'SayCan'과 같은연구[6]는 LLM의 언어적추론능력을 로봇의

행동 가능성(Affordance)과 결합하려는 시도였으나, 이는 주로 단일 로봇

의행동생성에국한되었다. 다기종환경에서는 각플랫폼이수행할수있

는행동의종류와물리적제약이서로다르므로, 상위의 지능(Brain)과 하

위의 실행(Body)을 연결하는 새로운 아키텍처가 필요하다.

2.3 행동 추상화 및 아키텍처의 필요성

기존 연구들은 주로 이기종 플랫폼 간의 데이터 통신 프로토콜 통합이나

미들웨어 수준의 연결에 집중하였다[4]. 그러나 플랫폼의 종류가 늘어날

수록 시스템 복잡도가 급증하는 문제를 해결하기 위해서는 '판단'과 '실

행'을 명확히 분리하는 접근이 필수적이다.

본 연구는 선행 연구의 한계를 극복하기 위해 '행동 추상화(Action
Abstraction)' 개념을 도입한다. 이는 전술적 판단을플랫폼과 무관한 '의
미 단위의 행동 요청'으로 정의하고, 이를 중재 계층에서 각 플랫폼에 최
적화된 실행 명령으로 변환한다. 이러한 구조는 새로운 플랫폼이 추가되
더라도 상위 판단 구조를 수정할 필요가 없어 시스템의 확장성
(Scalability)을 보장하며 , MLOps 루프를 통해 운용 데이터를 학습하여
지속적으로 진화할 수 있다는 점에서 기존 정적 제어 시스템과 차별화된
다.



3. 제안하는 시스템 아키텍처

본 연구는 다수·다기종 무인 플랫폼의 복잡성을 해결하고 확장성을 확보

하기 위해, 인간의 인지-행동 과정을 모사한 3단계 계층 구조

(Three-Layered Architecture)를 제안한다 . 이 구조는 판단(Decision)과

실행(Execution)을 명확히 분리하여, 상위 시스템은 "무엇을 할 것인가

(What)"에 집중하고 하위 시스템은 "어떻게 할 것인가(How)"를 전담하

는 것을 원칙으로 한다.

3.1 전술 판단 계층 (Tactical Decision Layer)

최상단에 위치한 전술 판단 계층은 피지컬 AI(Physical AI) 기반의 시스

템 두뇌 역할을 수행한다. 이 계층은 개별 센서 데이터나 로봇의 좌표 정

보보다는 전장 상황의 '맥락(Context)'을 이해하는 데 집중한다.

맥락 기반 의사결정: "현재 임무가 어느 단계인가", "가용한 자산은 무엇

인가"와 같은 고수준의 정보를 융합하여 상황을 인지한다.

전술적 행동 도출: 구체적인 로봇 제어 명령(예: 모터 속도, 타각)이 아닌,

"감시공백보완", "의심객체추적"과같은전술적의미를가진행동요구

사항(Action Request)을 산출한다. 이 판단은 하드웨어 플랫폼의 종류와

관계없이 동일하게 내려질 수 있는 공통의 판단 구조이다.

3.2 임무 오케스트레이션 계층 (Mission Orchestration Layer)

본 아키텍처의핵심기여점인중간계층으로, 전술 판단계층과로컬 실행

계층 사이에서 '행동 추상화(Action Abstraction)' 및 중재자(Mediator)

역할을 수행한다.

행동 번역(Translation): 상위 계층의 추상적인 행동 요청을 각 플랫폼이

이해할 수 있는 구체적인 실행 명령으로 변환한다. 예를들어, 동일한 "추

적 유지" 명령이라도 드론에게는 '상공 비행 및 카메라 줌인'으로, 지상

로봇에게는 '경로 확보 및 접근'으로 서로 다르게 매핑된다.

확장성(Scalability) 보장: 새로운 기종의 로봇이 추가되더라도, 이 계층에

서 해당 로봇이 수행 가능한 행동(Capabilities)만 정의하면 된다. 상위의

전술판단로직을수정할필요없이기존자산중하나로자연스럽게통합

할 수 있어 시스템의 유연성을 극대화한다.

3.3 로컬 실행 계층 (Local Execution Layer)

최하단에위치한 로컬실행 계층은 각무인 플랫폼(UAV, UGV, USV 등)

의 엣지(Edge) 단에서 물리적 제어를 담당한다.

플랫폼 최적화: 센서 데이터 처리, 위치 추정(Localization), 자세 제어 등

은 각 플랫폼의 동역학적 특성에 맞춰 최적화되어야 하며, 중앙 시스템은

이러한 내부 구현(Internal Implementation)을 알 필요가 없다.

안전 및 생존성: 충돌 회피나 통신 두절 시의 자동 회귀(Return to Home)

와 같은즉각적인생존본능은상위계층의판단대기없이로컬에서독립

적으로 수행하여 안전성을 보장한다.

4. 시스템 운용 메커니즘 및 MLOps 전략 (System Operation

Mechanism & MLOps Strategy)

4.1 엣지-클라우드 협업 운용

전술 환경의 통신 불안정성을 극복하기 위해 본 시스템은 이원화된 추론

구조를갖는다. 즉각적인반응(장애물회피 등)은엣지디바이스에서처리

하고, 고수준의 전술판단은중앙서버에서수행한다. 통신이 단절될 경우

로컬 계층은 독립 모드로 전환되어 플랫폼의 손실을 방지한다.

4.2 MLOps 기반의 지속적 진화

단순한 제어를 넘어 시스템의 지속 가능성을 확보하기 위해, 본 연구는

MLOps 루프를 아키텍처에 통합한다.

데이터 수집: 현장에서의 센서 데이터 및 AI 판단에 대한 피드백(성공/실

패) 수집.

재학습: 취약 구간 데이터(Corner Case)를 중심으로 모델 자동 재학습.

점진적 배포: 검증된 모델을 엣지 및 중앙 서버에 업데이트. 이러한 순환

구조는시간이지날수록 시스템이전장환경에적응하며 지능이고도화되

는 결과를 낳는다

5.1 결론

본 연구는 다수·다기종 무인 플랫폼의 효율적인 통합 운용을 위해 행동

추상화 기반의 피지컬 AI 제어 시스템을 제안하였다. 제안된 아키텍처는

판단과 실행을 분리함으로써 하드웨어 의존성을 제거하고 시스템의

확장성을 획기적으로 향상시켰다. 향후 연구로는 이기종 로봇 간의 표준

행동프로토콜정의와실제필드테스트를통한통신지연및제어안정성

검증을 수행할 예정이다.
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